1
|
Chen PA, Liu SH, Wang HP. Pseudocapacitive Deionization of Saltwater by Mn 3O 4@C/Activated Carbon. ACS OMEGA 2023; 8:13315-13322. [PMID: 37065037 PMCID: PMC10099447 DOI: 10.1021/acsomega.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Capacitive deionization (CDI), a m ethod with notable advantages of relatively low energy consumption and environmental friendliness, has been widely used in desalination of saltwater. However, due to the weak electrical double-layer electrosorption of ions from water, CDI has suffered from low throughput capacity that may limit its commercial applications. Thus, it is of importance to develop a high-efficiency and engineering-feasible CDI process. Manganese and cobalt and their oxides, being faradic materials, have a relatively high pseudocapacitance, which can cause an increase of positive and negative charges on opposing electrodes. However, their low conductivity properties limit their electrochemical applications. Pseudocapacitive Mn3O4 nanoparticles encapsulated within a conducting carbon shell (Mn3O4@C) were prepared to enhance charge transfer and capacitance for CDI. Desalination performances of the Mn3O4@C (5-15 wt %) core-shell nanoparticles on activated carbon (AC) (Mn3O4@C/AC) serving as CDI electrodes have thus been investigated. The pseudocapacitive Mn3O4@C/AC electrodes with relatively low diffusion resistances have much greater capacitance (240-1300 F/g) than the pristine AC electrode (120 F/g). In situ synchrotron X-ray absorption near-edge structure spectra of the Mn3O4@C/AC electrodes during CDI (under 1.2 and -1.2 V for electrosorption and regeneration, respectively) demonstrate that reversible faradic redox reactions cause more negative charges on the negative electrode and more positive charges on the positive electrode. Consequently, the pseudocapacitive electrodes for CDI of saltwater ([NaCl] = 1000 ppm) show much better desalination performances with a high optimized salt removal (600 mg/g·day), electrosorption efficiency (48%), and electrosorption capacity (EC) (25 mg/g) than the AC electrodes (288 mg/g·day, 23%, and 12 mg/g, respectively). The Mn3O4@C/AC electrode has a maximum EC of 29 mg/g for CDI under +1.2 V. Also, the Mn3O4@C/AC electrodes have much higher pseudocapacitive electrosorption rate constants (0.0049-0.0087 h-1) than the AC electrode (0.0016 h-1). This work demonstrates the feasibility of high-efficiency CDI of saltwater for water recycling and reuse using the low-cost and easily fabricated pseudocapacitive Mn3O4@C/AC electrodes.
Collapse
|
2
|
Liu Y, Tian Y, Xu J, Wang C, Wang Y, Yuan D, Chew JW. Electrosorption performance on graphene-based materials: a review. RSC Adv 2023; 13:6518-6529. [PMID: 36845580 PMCID: PMC9950858 DOI: 10.1039/d2ra08252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/19/2023] [Indexed: 02/28/2023] Open
Abstract
Due to its unique advantages such as flexible planar structure, ultrahigh specific surface area, superior electrical conductivity and electrical double-layer capacitance in theory, graphene has unparalleled virtues compared with other carbon materials. This review summarizes the recent research progress of various graphene-based electrodes on ion electrosorption fields, especially for water desalination utilizing capacitive deionization (CDI) technology. We present the latest advances of graphene-based electrodes, such as 3D graphene, graphene/metal oxide (MO) composites, graphene/carbon composites, heteroatom-doped graphene and graphene/polymer composites. Furthermore, a brief outlook on the challenges and future possible developments in the electrosorption area are also addressed for researchers to design graphene-based electrodes towards practical application.
Collapse
Affiliation(s)
- Yan Liu
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Yun Tian
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Jianda Xu
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Changfu Wang
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Yun Wang
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Dingzhong Yuan
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
3
|
Enhanced Electrodesorption Performance via Cathode Potential Extension during Capacitive Deionization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complete desorption of contaminants from electrode materials is required for the efficient utilization and long service life of capacitive deionization (CDI) but remains a major challenge. The electrodesorption capacity of CDI in the conventional electrode configuration is limited by the narrow electrochemical stability window of water, which lowers the operating potential to approximately 1.2 V. Here, we report a graphite anode–titanium cathode electrode configuration that extends the cathode potential to −1.7 V and provides an excellent (100%) electrodesorption performance, which is maintained after five cycles. The improvement of the cathode potential depends on the redox property of the electrode. The stronger the oxidizability of the anode and reducibility of the cathode, the wider the cathode potential. The complete desorption potential of SO42− predicted by theoretical electrochemistry was the foundation for optimizing the electrode configuration. The desorption efficiency of Cl− depended on the ionic strength and was negligibly affected by circulating velocities above 112 mL min−1. This work can direct the design optimizations of CDI devices, especially for reactors undergoing chemisorption during the electrosorption process.
Collapse
|
4
|
Liu C, Ma L, Xu Y, Wang F, Tan Y, Huang L, Ma S. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:518-530. [PMID: 34331231 DOI: 10.1007/s11356-021-15651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
According to the characteristics of desulfurization wastewater, A new capacitive deionization (CDI) device was designed to study the desalination characteristics of desulfurization wastewater in this paper. The experiments investigated the desalination efficiency under different conditions which find that the best desalination efficiency is achieved at a voltage of 1.2V, pH=11 and 50°C. Besides, ion adsorption is more favorable under acidic and alkaline conditions. The anion and cation removal performance experiments showed that the order of cation removal is Mg2+>Na+>Ca2+>K+ and the order of anion removal is Cl->CO32->NO3->SO42->HCO3-. The mechanism of CDI was studied and analyzed by the isothermal adsorption model and COMSOL simulation software. It was found that the Freundlich model and Redlich-Peterson model have a good fit with the experimental results. The experiments show that the CDI device has excellent stability. CDI device was used to treat actual desulfurization wastewater. Furthermore, the study provides theoretical support for the industrial application of CDI for desulfurization wastewater treatment in the future. Graphical abstract.
Collapse
Affiliation(s)
- Chang Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Beijing, 102206, China
| | - Lan Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Beijing, 102206, China
| | - Yongyi Xu
- China Power Hua Chuang Electricity Technology Research Company Ltd., Beijing, China
| | - Feng Wang
- China Power Hua Chuang Electricity Technology Research Company Ltd., Beijing, China
| | - Yu Tan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Luyue Huang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Shuangchen Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Beijing, 102206, China.
| |
Collapse
|
5
|
Maheshwari K, Agrawal M, Gupta A. Experimental investigation for treating the RO reject stream through capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhou C, Wang Y. Recent progress in the conversion of biomass wastes into functional materials for value-added applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:787-804. [PMID: 33354165 PMCID: PMC7738282 DOI: 10.1080/14686996.2020.1848213] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The amount of biomass wastes is rapidly increasing, which leads to numerous disposal problems and governance issues. Thus, the recycling and reuse of biomass wastes into value-added applications have attracted more and more attention. This paper reviews the research on biomass waste utilization and biomass wastes derived functional materials in last five years. The recent research interests mainly focus on the following three aspects: (1) extraction of natural polymers from biomass wastes, (2) reuse of biomass wastes, and (3) preparation of carbon-based materials as novel adsorbents, catalyst carriers, electrode materials, and functional composites. Various biomass wastes have been collected from agricultural and forestry wastes, animal wastes, industrial wastes and municipal solid wastes as raw materials with low cost; however, future studies are required to evaluate the quality and safety of biomass wastes derived products and develop highly feasible and cost-effective methods for the conversion of biomass wastes to enable the industrial scale production.
Collapse
Affiliation(s)
- Chufan Zhou
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Quebec, Quebec, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Quebec, Quebec, Canada
- CONTACT Yixiang Wang Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
7
|
Luciano MA, Ribeiro H, Bruch GE, Silva GG. Efficiency of capacitive deionization using carbon materials based electrodes for water desalination. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113840] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W, Yang J, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1350-1377. [PMID: 31529571 DOI: 10.1002/wer.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The review scans research articles published in 2018 on physico-chemical processes for water and wastewater treatment. The paper includes eight sections, that is, membrane technology, granular filtration, flotation, adsorption, coagulation/flocculation, capacitive deionization, ion exchange, and oxidation. The membrane technology section further divides into six parts, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis/forward osmosis, and membrane distillation. PRACTITIONER POINTS: Totally 266 articles on water and wastewater treatment have been scanned; The review is sectioned into 8 major parts; Membrane technology has drawn the widest attention from the research community.
Collapse
Affiliation(s)
- Weihang Ouyang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tianhao Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yihao Shi
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liangyu Tong
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangyu Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Weiwen Wang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiajun Yang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Environmental Systems Engineering, University of Regina, Saskatchewan, Canada
| |
Collapse
|
9
|
Sun Z, Li Q, Chai L, Shu Y, Wang Y, Qiu D. Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization. CHEMOSPHERE 2019; 229:341-348. [PMID: 31078891 DOI: 10.1016/j.chemosphere.2019.04.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
This paper is concerned with the effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization (CDI). An empirical equation developed firstly based on the experimental data in the electrosorption of Cl-. The empirical equation shows that the electrosorption capacity exhibits a logarithmic relationship with anode potential. Electrosorption of ReO4- and NO3- at different anode potentials were studied and the obtained data used to compare with empirical equation. The empirical equation provided results that were in good agreement with experimental data. According to parameters (A and b) of empirical equation, the chemical bond mainly affected adsorption mechanism and desorption performance. For Cl- with the weaker chemical bond, the main mechanism of electrosorption of Cl- is formation of electrical double layers and the desorption is easier, while for ReO4-, the main adsorption mechanism is chemical bonding and adsorbed anion basically fail to desorb at the equal conditions with Cl-. The revelation of all the CDI performance here would appear to be a useful tool for selection of more suitable electrodes materials to improve adsorption capacity and desorption efficiency of anions.
Collapse
Affiliation(s)
- Zhumei Sun
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China.
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Yude Shu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Dingfan Qiu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Beijing General Research Institute of Mining and Metallurgy, Beijing, 100044, China
| |
Collapse
|