1
|
Sheng M, Liu Y, Zeng G, Zhang Q, Peng H, Lei L, Liu H, He N, Xu H, Guo H. For aqueous/soil cadmium immobilization under acid attack, does the hydroxyapatite converted from Pseudochrobactrum sp. DL-1 induced vaterite necessarily show higher stability? JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135631. [PMID: 39182299 DOI: 10.1016/j.jhazmat.2024.135631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Microbial induced carbonate precipitation (MICP) technology was widely applied to immobilize heavy metals, but its long-term stability is tough to maintain, particularly under acid attack. This study successfully converted Pseudochrobactrum sp. DL-1 induced vaterite (a rare crystalline phase of CaCO3) to hydroxyapatite (HAP) at 30 ℃. The predominant conversion mechanism was the dissolution of CdCO3-containing vaterite and the simultaneous recrystallization of Ca4.03Cd0.97(PO4)3(OH)-containing HAP. For aqueous Cd immobilization, stability test at pH 2.0-10.0 showed that the Cd2+ desorption rate of Cd-adsorbed vaterite (3.96-4.35 ‱) were 7.13-20.84 times greater than that of Cd-adsorbed HAP (0.19-0.61 ‱). For soil Cd immobilization under 60 days of acid-rain erosion, the highest immobilization rate (51.00 %) of exchangeable-Cd and the lowest dissolution rate (-0.18 %) of carbonate-Cd were achieved with 2 % vaterite, while the corresponding rates were 16.78 % and 1.31 % with 2 % HAP, respectively. Furthermore, vaterite outperformed HAP in terms of soil ecological thorough evaluation. In conclusion, for Cd immobilization by MICP under acid attack, DL-1 induced vaterite displayed direct application value due to its exceptional stability in soil and water, while the mineral conversion strategy we presented is useful for further enhancing the stability in water.
Collapse
Affiliation(s)
- Mingping Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yikai Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Guoquan Zeng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - He Peng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Ling Lei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Nan He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science by University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
2
|
Yuan Y, Yang L, Wan X, Zhao Y, Gong Y, Xing W, Xue T, Tao J. Microplastics in heavy metal-contaminated soil drives bacterial community and metabolic changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174770. [PMID: 39032735 DOI: 10.1016/j.scitotenv.2024.174770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Microplastic (MP) and heavy metal pollution in soil are global issues. When MPs invade the soil, they combine with heavy metals and adversely affect soil organisms. Six common MPs-polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and polytetrafluoroethylene-were selected for this study to examine the effects of various concentrations and MP types on the physicochemical properties, bacterial community, and soil metabolism of heavy metal-contaminated soil. MP enhanced predation and competition among heavy metal-contaminated soil bacteria. Heavy metal-MPs alter metabolites in lipid metabolism, other pathways, and the bacterial community. MP treatment promotes energy production and oxidative stress of soil bacteria to resist the toxicity of heavy metals and degrade MP pollution. In conclusion, MP treatment changed the metabolism of the microbiome in heavy metal-contaminated soil and increased the abundance of Proteobacteria that responded to MPs and heavy metal pollution by 11.54 % on average. This study explored bacteria for the ecological regeneration and provided ideas for MPs and heavy metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liping Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xin Wan
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Yuxue Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yizhao Gong
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Wei Xing
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China.
| | - Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui 239000, China.
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Wang L, Yin Z, Yan W, Hao J, Tian F, Shi J. Nitrate-dependent antimony oxidase in an uncultured Symbiobacteriaceae member. THE ISME JOURNAL 2024; 18:wrae204. [PMID: 39413245 PMCID: PMC11521347 DOI: 10.1093/ismejo/wrae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/18/2024]
Abstract
Autotrophic antimony (Sb) oxidation coupled to nitrate reduction plays an important role in the transformation and detoxification of Sb. However, the specific oxidase involved in this process has yet to be identified. Herein, we enriched the microbiota capable of nitrate-dependent Sb(III) oxidation and identified a new Sb(III) oxidase in an uncultured member of Symbiobacteriaceae. Incubation experiments demonstrated that nitrate-dependent Sb(III) oxidation occurred in the microcosm supplemented with Sb(III) and nitrate. Both the 16S rRNA gene and metagenomic analyses indicated that a species within Symbiobacteriaceae played a crucial role in this process. Furthermore, carbon-13 isotope labeling with carbon dioxide-fixing Rhodopseudomonas palustris in combination with nanoscale secondary ion mass spectrometry revealed that a newly characterized oxidase from the dimethylsulfoxide reductase family, designated as NaoABC, was responsible for autotrophic Sb(III) oxidation coupled with nitrate reduction. The NaoABC complex functions in conjunction with the nitrate reductase NarGHI, forming a redox loop that transfers electrons from Sb(III) to nitrate, thereby generating the energy necessary for autotrophic growth. This research offers new insights into the understanding of how microbes link Sb and nitrogen biogeochemical cycles in the environment.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Fei Tian
- CAS Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, China
| |
Collapse
|
4
|
Wang H, Du X, Zhang Z, Feng F, Zhang J. Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics. IMETA 2023; 2:e133. [PMID: 38868220 PMCID: PMC10989832 DOI: 10.1002/imt2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 06/14/2024]
Abstract
The prevalence of cadmium (Cd)-polluted agricultural soils is increasing globally, and arbuscular mycorrhizal fungi (AMF) can reduce the absorption of heavy metals by plants and improve mineral nutrition. However, the immobilization of the rhizosphere on cadmium is often overlooked. In this study, Glomus mosseae and Medicago sativa were established as symbiotes, and Cd migration and environmental properties in the rhizosphere were analyzed. AMF reduced Cd migration, and Cd2+ changed to an organic-bound state. AMF symbiosis treatment and Cd exposure resulted in microbial community variation, exhibiting a distinct deterministic process (|βNTI| > 2), which ultimately resulted in a core microbiome function of heavy metal resistance and nutrient cycling. AMF increased available N and P, extracellular enzyme activity (LaC, LiP, and CAT), organic matter content (TOC, EOC, and GRSP), and Eh of the rhizosphere soil, significantly correlating with decreased Cd migration (p < 0.05). Furthermore, AMF significantly affected root metabolism by upregulating 739 metabolites, with flavonoids being the main factor causing microbiome variation. The structural equation model and variance partial analysis revealed that the superposition of the root metabolites, microbial, and soil exhibited the maximum explanation rate for Cd migration reduction (42.4%), and the microbial model had the highest single explanation rate (15.5%). Thus, the AMF in the rhizosphere microenvironment can regulate metabolite-soil-microbial interactions, reducing Cd migration. In summary, the study provides a new scientific explanation for how AMF improves plant Cd tolerance and offers a sustainable solution that could benefit both the environment and human health.
Collapse
Affiliation(s)
- Hong‐Rui Wang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Xin‐Ran Du
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Zhuo‐Yun Zhang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Fu‐Juan Feng
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Jia‐Ming Zhang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
5
|
He Y, Su N, Zhao Q, Meng J, Chen Z, Han H. Polyamine-producing bacteria inhibit the absorption of Cd by spinach and alter the bacterial community composition of rhizosphere soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115442. [PMID: 37672938 DOI: 10.1016/j.ecoenv.2023.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Polyamines (PAs) are small aliphatic nitrogenous bases with strong biological activity that participate in plant stress response signaling and the alleviation of damage from stress. Herein, the effects of the PA-producing bacterium Bacillus megaterium N3 and PAs on the immobilization of Cd and inhibition of Cd absorption by spinach and the underlying mechanisms were studied. A solution test showed that strain N3 secreted spermine and spermidine in the presence of Cd. Both strain N3 and the PAs (spermine+spermidine) immobilized Cd and increased the pH of the solution. Untargeted metabolomics results showed that strain N3 secreted PAs, N1-acetylspermidine, 3-indolepropionic acid, indole-3-acetaldehyde, cysteinyl-gamma-glutamate, and choline, which correlated with plant growth promotion and Cd immobilization. A pot experiment showed that rhizosphere soil inoculation with strain N3 and PAs improved spinach dry weight and reduced spinach Cd absorption compared with the control. These positive effects were likely due to the increase in rhizosphere soil pH and NH4+-N and PA contents, which can be attributed primarily to Cd immobilization. Moreover, inoculation with strain N3 more effectively inhibited the absorption of Cd by spinach than spraying PAs, mainly because strain N3 enabled a better relative abundance of bacteria (Microvirga, Pedobacter, Bacillus, Brevundimonas, Pseudomonas, Serratia, Devosid, and Aminobacter), that have been reported to have the ability to resist heavy metals and produce PAs. Strain N3 regulated the structure of rhizosphere functional bacterial communities and inhibited Cd uptake by spinach. These results provide a theoretical basis for the prevention of heavy metal absorption by vegetables using PA-producing bacteria.
Collapse
Affiliation(s)
- Yonghong He
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Nannan Su
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Qingzhao Zhao
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Jiaer Meng
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Zhaojin Chen
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Hui Han
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| |
Collapse
|
6
|
Wang R, Liu T, Lu C, Zhang Z, Guo P, Jia B, Hao B, Wang Y, Guo W. Bioorganic fertilizers improve the adaptability and remediation efficiency of Puccinellia distans in multiple heavy metals-contaminated saline soil by regulating the soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130982. [PMID: 36860055 DOI: 10.1016/j.jhazmat.2023.130982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Soil salinization and heavy metal (HM) pollution are global environmental problems. Bioorganic fertilizers facilitate phytoremediation, but their roles and microbial mechanisms in natural HM-contaminated saline soils have not been explored. Therefore, greenhouse pot trials were conducted with three treatments: control (CK), manure bioorganic fertilizer (MOF), and lignite bioorganic fertilizer (LOF). The results showed that MOF and LOF significantly increased nutrient uptake, biomass, toxic ion accumulation in Puccinellia distans, soil available nutrients, SOC, and macroaggregates. More biomarkers were enriched in MOF and LOF. Network analysis confirmed that MOF and LOF increased the number of bacterial functional groups and fungal community stability and strengthened their positive association with plants; Bacteria have a more significant effect on phytoremediation. Most biomarkers and keystones play important roles in promoting plant growth and stress resistance in the MOF and LOF treatments. In summary, besides enrichment of soil nutrients, MOF and LOF can also improve the adaptability and phytoremediation efficiency of P. distans by regulating the soil microbial community, with LOF having a greater effect.
Collapse
Affiliation(s)
- Run Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Chengyan Lu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Peiran Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
7
|
Feng M, Du Y, Li X, Li F, Qiao J, Chen G, Huang Y. Insight into universality and characteristics of nitrate reduction coupled with arsenic oxidation in different paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161342. [PMID: 36603609 DOI: 10.1016/j.scitotenv.2022.161342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrate reduction coupled with arsenic (As) oxidation strongly influences the bioavailability and toxicity of As in anaerobic environments. In the present study, five representative paddy soils developed from different parent materials were used to investigate the universality and characteristics of nitrate reduction coupled with As oxidation in paddy soils. Experimental results indicated that 99.8 % of highly toxic aqueous As(III) was transformed to dissolved As(V) and Fe-bound As(V) in the presence of nitrate within 2-8 d, suggesting that As was apt to be reserved in its low-toxic and nonlabile form after nitrate treatment. Furthermore, nitrate additions also significantly induced the higher abundance of 16S rRNA and As(III) oxidase (aioA) genes in the five paddy soils, especially in the soils developed from purple sand-earth rock and quaternary red clay, which increased by 10 and 3-5 times, respectively, after nitrate was added. Moreover, a variety of putative novel nitrate-dependent As(III)-oxidizing bacteria were identified based on metagenomic analysis, mainly including Aromatoleum, Paenibacillus, Microvirga, Herbaspirillum, Bradyrhizobium, Azospirillum. Overall, all these findings indicate that nitrate reduction coupled with As(III) oxidation is an important nitrogen-As coupling process prevalent in paddy environments and emphasize the significance of developing and popularizing nitrate-based biotechnology to control As pollution in paddy soils and reduce the risk of As compromising food security.
Collapse
Affiliation(s)
- Mi Feng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiangtao Qiao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Gongning Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Li X, Li J, Zhao Q, Qiao L, Wang L, Yu C. Physiological, biochemical, and genomic elucidation of the Ensifer adhaerens M8 strain with simultaneous arsenic oxidation and chromium reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129862. [PMID: 36084460 DOI: 10.1016/j.jhazmat.2022.129862] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study reports the simultaneous oxidation of As(III) and reduction of the Cr(VI) strain Ensifer adhaerens M8 screened from soils around abandoned gold tailings contaminated with highly complex metals (loids). Physiological, biochemical, and genomic techniques were used to explore the mechanism. The strain M8 could simultaneously oxidize 1 mM As(III) and reduce 45.3 % 0.1 mM Cr(VI) in 16 h, and the Cr(VI) reduction rate was increased by 5.8 % compared with the addition of Cr(VI) alone. Cellular debris was the main site of M8 arsenic oxidation. Chromium reduction was dominated by the reduction of extracellular hexavalent chromium (23.80-35.67 %). The genome of M8 included one chromosome and four plasmids, and a comparison of the genomes showed that M8 had two more plasmids than strains of the same genus, which may be related to strong environmental adaptations. M8 had 10 heavy metal resistance genes (HMRs), and plasmid D had a complete cluster of arsenic resistance-oxidation-transport genes (arsOHBCCR-aioSR-aioBA-cytCmoeA-phoBBU-PstBACS-phnCDEE). The genes involved in Cr(VI) detoxification include DNA repair (RecG, ruvABC, and UvrD), Cr(VI) transport (chrA, TonB, and CysAPTW) and Cr(VI) reduction. In summary, this study provides a molecular basis for As (III) and Cr (VI) remediation.
Collapse
Affiliation(s)
- Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Jingru Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Qiancheng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Limin Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
9
|
Sun H, Gao P, Dong J, Zhao Q, Xue P, Geng L, Zhao J, Liu W. Rhizosphere bacteria regulated arsenic bioavailability and accumulation in the soil-Chinese cabbage system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114420. [PMID: 36521270 DOI: 10.1016/j.ecoenv.2022.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The accumulation of arsenic (As) in Chinese cabbage (Brassica rapa ssp. pekinensis) has recently been a source of concern for a potential risk to human health. It is unknown whether natural variations of As accumulation in different genotypes of Chinese cabbage are related to rhizobacterial characteristics. Experiments were conducted to investigate the mechanisms of rhizobacteria involving in As fates in a soil-Chinese cabbage system using various genotypes using high-throughput sequencing and quantitative PCR. There were significant differences in As accumulation in cabbage leaves between 32 genotypes, and genotypes of low-As-accumulation (LSA) and high-As-accumulation (HSA) were identified. The As concentrations in the shoots of LSA were 23.25 %, 24.19 %, 15.05 %, and 70.69 % lower than those of HSA in seedling stage (SS), rosette stage (RS), heading stage (HS), and mature stage (MS), respectively. Meanwhile, the relative abundances of phyla Patescibacteria (in RS), Acidobacteria and Rokubacteria (in HS) in the rhizosphere of LSA were 60.18 %, 28.19 %, and 45.38 % less than those of HSA, respectively. Additionally, both shoot-As and As translocation factor had significantly positive or negative correlations with the relative abundances of Rokubacteria or Actinobacteria. In LSA rhizosphere, the relative abundances of genera Flavobacterium (in SS), Ellin6055 and Sphingomonas (in HS) were 128.12 %, 83.69 % and 79.50 % higher than those of HSA, respectively. This demonstrated that rhizobacteria contribute to the accumulation and translocation of As in HSA and LSA. Furthermore, the gene copies of aioA and arsM in LSA rhizosphere were 25.54 % and 16.13 % higher than those of HSA, respectively, whereas the gene copies of arsC in LSA rhizosphere were 26.36 % less than those of HSA in MS, indicating that rhizobacteria are involved in As biotransformation in the soil. These results provide a comprehensive understanding of the relationship between characteristics of rhizobacterial communities and As variations in Chinese cabbage genotypes.
Collapse
Affiliation(s)
- Hongxin Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Peipei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Junwen Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Quanli Zhao
- The Teaching and Experimental Station, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Peiying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
| | - Liping Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Centre of Vegetable Industry in Hebei, College of Horticulture, Baoding 071000, Hebei, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, Hebei, China.
| |
Collapse
|
10
|
Zhang H, Zhang B, Wang S, Chen J, Jiang B, Xing Y. Spatiotemporal vanadium distribution in soils with microbial community dynamics at vanadium smelting site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114782. [PMID: 32454384 DOI: 10.1016/j.envpol.2020.114782] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Whereas the adverse effects of vanadium released from smelting activities on soil microbial ecology have been widely recognized, little is known about spatiotemporal vanadium distribution and microbial community dynamics in typical contaminated sites. This study describes vanadium contents associated with health risk and microbial responses in both topsoil and subsoil during four consecutive seasons around an ongoing-production smelter in Panzhihua, China. Higher levels of vanadium concentration exceeding soil background value in China (82 mg/kg) were found close to the smelter. Vanadium concentrations decreased generally with the increase in distance to the smelter and depth below surface, as soil vanadium pollution is induced mainly by atmospheric deposition of vanadium bearing dust during smelting. Residual fraction was the predominated vanadium form in soils, with pronounced increase in bioavailable vanadium during rainfall period due to frequent drought-rewetting process. Topsoil close to the smelter exhibited significant contamination, inducing high probability of adverse health effects. Spatiotemporal vanadium distribution creates filtering effects on soil microorganisms, promoting metal tolerant genera in topsoil (e.g. Microvirga) and subsoil (e.g. Bacillus, Geobacter), which is the key in maintaining the community structure by promoting cooperative relation with other taxa. Our results reveal spatiotemporal vanadium distribution in soils at site scale with potential health risk and microbial responses, which is helpful in identifying severe contamination and implementing bioremediation.
Collapse
Affiliation(s)
- Han Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Song Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Junlin Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, PR China
| |
Collapse
|
11
|
Yan C, Wang F, Liu H, Liu H, Pu S, Lin F, Geng H, Ma S, Zhang Y, Tian Z, Chen H, Zhou B, Yuan R. Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2020; 189:109869. [PMID: 32678731 DOI: 10.1016/j.envres.2020.109869] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Mine tailing dumps represent significant threats to ecological environments due to the presence of toxic substances. The present work investigated the relationship among microbial activity, the community, antibiotic resistance genes (ARGs) and trace metals in soil surrounding gold mine tailings. Using microbial metabolic activity and high-throughput sequencing analysis, we found the trace metals Cd and Hg could be main factors influencing the microbial community. According to bacterial co-occurrence pattern analysis, the effects of total cadmium and total mercury on bacterial diversity are potentially mediated by influencing bacteria community in the keystone module II. Additionally, most of metal-resistant bacteria belong to Actinobacteria and Proteobacteria, and the metal tolerance suggested to be linked with various functions including replication, recombination and repair, as well as inorganic ion transport and metabolism based on PICRUSt2 analysis. We also found that metals generated by mining activity may trigger the co-selection of antibiotic resistance in the phyla Actinobacteria and Proteobacteria due to co-resistance or cross resistance. Additionally, PLS-PM analysis revealed that metals could indirectly affect ARGs by influencing bacterial diversity in gold mining areas.
Collapse
Affiliation(s)
- Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, 1318 Jixian North Road, 246133, Anqing, Anhui, China
| | - Huafeng Liu
- Shandong Institute of Geological Survey, 35 Jianzhuxincun South Road, Lixia District, 250014, Jinan, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, 610059, Chengdu, Sichuan, China
| | - Fanyu Lin
- Analytical and Testing Center, Third Institute of Oceanography, Ministry of Natural Resources, 178 University Road, Siming District, 361000, Xiamen, Fujian, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Yiyue Zhang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, 101500, Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
12
|
Bagade A, Nandre V, Paul D, Patil Y, Sharma N, Giri A, Kodam K. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114124. [PMID: 32078878 DOI: 10.1016/j.envpol.2020.114124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Groundwater arsenic pollution causes millions of deaths worldwide. Long term natural and anthropogenic activities have increased arsenic levels in groundwater causing higher threats of arsenic exposure. Arsenic hyper-tolerant Firmicute Bacillus firmus L-148 was isolated from arsenic limiting Lonar lake soil, which tolerated more than 3 M arsenic and could oxidize 75 mM arsenite [As(III)] in 14 days. It oxidized As(III) in presence of heavy metals and had unusual pH optima at 9.2. B. firmus L-148 was studied at the biochemical, protein, genomic and transcript level for understanding its arsenic oxidizing machinery. The proteomic and transcript analysis exhibited the presence of ars and aio operon and supported the inducible nature of ars operon. Robust, hyper-tolerant, fast As(III) oxidizing, least nutrient requiring and multi-metal resistance qualities of the strain were used in microcosm studies for bioremediation. Artificial groundwater mimicking microcosm with 75 mM As(III) was developed. Modulation of carbon source, iron and multi metals affected growth and As(III) oxidation rate. The As(III) oxidation was recorded to be 77% in 15 days in presence of sodium acetate and Fe ions. This microcosm study can be explored for bioremediation of arsenic contaminated water and followed by precipitation using other methods.
Collapse
Affiliation(s)
- Aditi Bagade
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Vinod Nandre
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - Yugendra Patil
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Nisha Sharma
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Ashok Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
13
|
Huq ME, Fahad S, Shao Z, Sarven MS, Khan IA, Alam M, Saeed M, Ullah H, Adnan M, Saud S, Cheng Q, Ali S, Wahid F, Zamin M, Raza MA, Saeed B, Riaz M, Khan WU. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110318. [PMID: 32250801 DOI: 10.1016/j.jenvman.2020.110318] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/16/2019] [Accepted: 02/20/2020] [Indexed: 05/24/2023]
Abstract
Groundwater with an excessive level of Arsenic (As) is a threat to human health. In Bangladesh, out of 64 districts, the groundwater of 50 and 59 districts contains As exceeding the Bangladesh (50 μg/L) and WHO (10 μg/L) standards for potable water. This review focuses on the occurrence, origin, plausible sources, and mobilization mechanisms of As in the groundwater of Bangladesh to better understand its environmental as well as public health consequences. High As concentrations mainly was mainly occur from the natural origin of the Himalayan orogenic tract. Consequently, sedimentary processes transport the As-loaded sediments from the orogenic tract to the marginal foreland of Bangladesh, and under the favorable biogeochemical circumstances, As is discharged from the sediment to the groundwater. Rock weathering, regular floods, volcanic movement, deposition of hydrochemical ore, and leaching of geological formations in the Himalayan range cause As occurrence in the groundwater of Bangladesh. Redox and desorption processes along with microbe-related reduction are the key geochemical processes for As enrichment. Under reducing conditions, both reductive dissolution of Fe-oxides and desorption of As are the root causes of As mobilization. A medium alkaline and reductive environment, resulting from biochemical reactions, is the major factor mobilizing As in groundwater. An elevated pH value along with decoupling of As and HCO3- plays a vital role in mobilizing As. The As mobilization process is related to the reductive solution of metal oxides as well as hydroxides that exists in sporadic sediments in Bangladesh. Other mechanisms, such as pyrite oxidation, redox cycling, and competitive ion exchange processes, are also postulated as probable mechanisms of As mobilization. The reductive dissolution of MnOOH adds dissolved As and redox-sensitive components such as SO42- and oxidized pyrite, which act as the major mechanisms to mobilize As. The reductive suspension of Mn(IV)-oxyhydroxides has also accelerated the As mobilization process in the groundwater of Bangladesh. Infiltration from the irrigation return flow and surface-wash water are also potential factors to remobilize As. Over-exploitation of groundwater and the competitive ion exchange process are also responsible for releasing As into the aquifers of Bangladesh.
Collapse
Affiliation(s)
- Md Enamul Huq
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Shizishan Street-1, Wuhan, 430070, Hubei, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan.
| | - Zhenfeng Shao
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China.
| | - Most Sinthia Sarven
- College of Plant Science and Technology, Huazhong Agricultural University, Shizishan Street-1, Wuhan, 430070, Hubei, China
| | - Imtiaz Ali Khan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mukhtar Alam
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Saeed
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muahmmad Adnan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Shah Saud
- Department of Horticulture, Northeast Agriculture University, Harbin, China
| | - Qimin Cheng
- Huazhong University of Science and Technology, School of Electronics Information and Communications, 1037 Luoyu Road, Wuhan, 430074, China
| | - Shaukat Ali
- Global Change Impact Studies Centre (GCISC), Ministry of Climate Change, Pakistan; Environmental Monitoring and Science Division, Alberta Environment and Parks, Canada
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zamin
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mian Ahmad Raza
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Beena Saeed
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, Pakistan
| | - Wasif Ullah Khan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
14
|
Piervandi Z, Khodadadi Darban A, Mousavi SM, Abdollahy M, Asadollahfardi G, Funari V, Dinelli E. Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109443. [PMID: 31398782 DOI: 10.1016/j.ecoenv.2019.109443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The continuous presence of toxic elements in the aquatic environments around mine tailings occurs due to bioleaching or chemical extraction promoted by the mining operations. Biogenic passivation treatment of tailings dams can be a new environment-friendly technique to inhibit the solubility of heavy metals. In spite of current bioleaching researches, we tried to minimize the mobility of the trace elements in the laboratory scale through the formation of a passivation layer in the presence of a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The X-ray diffraction (XRD) and scanning electron microscope (SEM) represented the jarosite generation as an inhibitory layer on the mineral surfaces of the tested materials. More detailed observations on electron probe micro-analyzer (EPMA) showed the co-precipitation of metals with the passivation layer. Thereby, the passivation layer demonstrates potential in elements immobilization which, in turn, can be optimized in the natural systems. Our working hypothesis was to exploit and optimize the formation of the passivation layer to maximize the immobilization of heavy metals (e.g., Cu, Cr). The optimization process of bioleaching experiments using indigenous bacteria caused a reduced solubility for Cu (from around 20% to 4.5%) and Cr (from around 30% to 10.6%) and the formation of 6.5 gr passivation layer. The analyses finally represented the high efficiency of the passivation technique to minimize metals bioleaching in comparison to earlier studies.
Collapse
Affiliation(s)
- Zeinab Piervandi
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Khodadadi Darban
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mahmoud Abdollahy
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Valerio Funari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Enrico Dinelli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Kumari N, Rana A, Jagadevan S. Arsenite biotransformation by Rhodococcus sp.: Characterization, optimization using response surface methodology and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:577-589. [PMID: 31216511 DOI: 10.1016/j.scitotenv.2019.06.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/11/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
A large population of the world is under increased health risk due to consumption of arsenic contaminated groundwater. The present study investigates the arsenic resistance and arsenic biotransforming ability in three bacterial species, namely Bacillus arsenicus, Rhodococcus sp. and Alcaligenes faecalis for employing them in potential groundwater bioremediation programmes. The tolerance to pH levels for the 3 organisms are 6-9 for A. faecalis, 5-10 for Rhodococcus and 5-9 for B. arsenicus. The arsenic bio-oxidation capacity was qualitatively confirmed by using the silver nitrate method and all three bacteria were able to convert arsenite to arsenate. The arsenite tolerance capacity (MIC values) were found to be 3 mM, 7 mM and 12 mM for B. arsenicus, A. faecalis and Rhodococcus sp. respectively. The changes in cellular morphology of these strains under various arsenic stress conditions were studied using advanced cell imaging techniques such as scanning electron microscopy and Atomic Force Microscopy. Rhodococcus sp. emerged as a potential candidate for bioremediation application. A response surface methodology was employed to optimize key parameters affecting arsenic removal (pH, Iron (II) soluble, concentration of humic acid and initial arsenic concentration) and at optimized conditions, experimental runs demonstrated 48.34% removal of As (III) (initial concentration = 500 μg/L) in a duration of 6 h, with complete removal after 48 h. Evidences from this work indicate that arsenic removal occurs through bioaccumulation, biotransformation and biosorption. The present study makes the first attempt to investigate the arsenic removal capability of Rhodococcus sp. in synthetic groundwater by employing bacterial whole cell assays. This study also sheds light on the arsenic tolerance and detoxification mechanisms employed by these bacteria, knowledge of which could be crucial in the successful implementation of in-situ bioremediation programmes.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
16
|
Saleh HN, Panahande M, Yousefi M, Asghari FB, Oliveri Conti G, Talaee E, Mohammadi AA. Carcinogenic and Non-carcinogenic Risk Assessment of Heavy Metals in Groundwater Wells in Neyshabur Plain, Iran. Biol Trace Elem Res 2019; 190:251-261. [PMID: 30225757 DOI: 10.1007/s12011-018-1516-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022]
Abstract
The present work reports the As, Cr, Cu, Pb, Zn, and Fe concentrations of drinking water samples in Neyshabur Plain, Iran. This study aimed also to ascertain the potential consumers' health risk of heavy metal intake. Heavy metal concentrations were analyzed by inductively coupled plasma optical emission spectrometry. The highest and lowest average values in the analyzed water samples were observed for Fe (9.78 ± 5.61 μg/L) and As (1.30 ± 2.99 μg/L), respectively. These values were well below the limits recommended by the World Health Organization and the Iranian national standard. Heavy metal pollution index and heavy metal evaluation index were used to evaluate drinking water quality. The risk index was calculated by chronic daily intake and hazard quotient according to the United States Environmental Protection Agency approach. Heavy metal pollution index in all the samples was less than 100, indicating that it is a low-level heavy metal. The total risk of all heavy metals in the urban environment varied from 40.164 × 10-7 to 174.8 × 10-7. In this research, the maximum average of risk belonged to lead and copper with the respective values of 60.10 × 10-7and 33.99 × 10-7 from the selected wells. However, considering the toxic effect of some elements, including Pb and As, in the chronic exposure of consumers, we suggest a continuous evaluation and monitoring of drinking water resources.
Collapse
Affiliation(s)
- Hossein Najafi Saleh
- Department of Environmental Health Engineering, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Maryam Panahande
- Environmental Research Institute, Academic Center for Education, Culture and Research (ACECR), Rasht, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Baghal Asghari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Elham Talaee
- Central Laboratory, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
Gong Y, Zhao D, Wang Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. WATER RESEARCH 2018; 147:440-460. [PMID: 30343201 DOI: 10.1016/j.watres.2018.10.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination by heavy metals and metalloids has been a major concern to human health and environmental quality. While many remediation technologies have been tested at the bench scale, there have been only limited reports at the field scale. This paper aimed to provide a comprehensive overview on the field applications of various soil remediation technologies performed over the last decade or so. Under the general categories of physical, chemical, and biological approaches, ten remediation techniques were critically reviewed. The technical feasibility and economic effectiveness were evaluated, and the pros and cons were appraised. In addition, attention was placed to the environmental impacts of the remediation practices and long-term stability of the contaminants, which should be taken into account in the establishment of remediation goals and environmental criteria. Moreover, key knowledge gaps and practical challenges are identified.
Collapse
Affiliation(s)
- Yanyan Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, United States; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
18
|
Freitas R, Coppola F, De Marchi L, Codella V, Pretti C, Chiellini F, Morelli A, Polese G, Soares AMVM, Figueira E. The influence of Arsenic on the toxicity of carbon nanoparticles in bivalves. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:484-493. [PMID: 29908840 DOI: 10.1016/j.jhazmat.2018.05.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Although an increasing number of studies have been published on the effects of emergent pollutants such as carbon nanoparticles, there is still scarce information on the impact of these contaminants on marine organisms when acting in combination with classical pollutants such as meta(loid)s. The present study evaluated the impacts of Arsenic and Multi-Walled Carbon Nanotubes (MWCNTs) in the clam Ruditapes philippinarum, assessing the effects induced when both contaminants were acting individually (As, NP) and as a mixture (As + NP). Metabolic capacity (electron transport system activity), oxidative stress (antioxidant and biotransformation enzymes activity and cellular damage) and neurotoxicity (Acetylcholinesterase activity) biomarkers were evaluated in clams after a 28 days exposure period. The results obtained showed that the accumulation of As was not affected by the presence of the NPs. Our results demonstrated that higher injuries were noticed in clams exposed to NPs, with higher metabolic depression and oxidative stress, regardless of the presence of As. Furthermore, higher neurotoxicity was observed in clams exposed to the combination of both contaminants in comparison to the effects of As and NPs individually.
Collapse
Affiliation(s)
- Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valeria Codella
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Napoli Federico II, 80126, Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|