1
|
Chi H, Ma J, Duan R, Wang A, Qiao Y, Wang W, Li C. Modulating crystal facets of photoanodes for photoelectrocatalytic scalable degradation of fluorinated pharmaceuticals in wastewater. WATER RESEARCH 2024; 262:122101. [PMID: 39032329 DOI: 10.1016/j.watres.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Fluorinated pharmaceuticals pollution has become an ever-increasing environmental concern due to its negative impacts. Photoelectrocatalytic (PEC) degradation system is a desirable approach to tackle the pollution problems. However, photogenerated charge separation and interfacial mass transfer are the main bottlenecks for improving the PEC degradation performance. Herein, we report a TiO2 photoanode with tuned (101)/(110) facets in situ grown on a Ti mesh substrate for PEC degradation of fluorinated pharmaceuticals. The exposure of (101) facets facilitates efficient photogenerated charge separation and the desorption of generated •OH radical. Besides, the three-dimensional (3D) architecture of photoanode promotes macroscopic mass transfer. This system performed complete defluorination of 5-fluorouracil and more than 75 % total organic carbon (TOC) removal efficiency. The apparent reaction rate constant of high (101) facet-exposed TiO2 grown on Ti mesh is up to 6.96 h-1, 6‒fold faster than that of photoanode with low (101) facet-exposed TiO2 grown on Ti foil. It is demonstrated that a large-sized PEC system of 1200 cm2 can degrade 100 L of synthetic fluorinated pharmaceutical wastewater with more than 80 % elimination efficiency. This work showcases the facet and substrate modulated strategy of fabricating high-performed photoanode for PEC wastewater purification.
Collapse
Affiliation(s)
- Haibo Chi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiangping Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Aoqi Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yafei Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Quilumbaquin W, Castillo-Cabrera GX, Borrero-González LJ, Mora JR, Valle V, Debut A, Loor-Urgilés LD, Espinoza-Montero PJ. Photoelectrocatalytic degradation of high-density polyethylene microplastics on TiO 2-modified boron-doped diamond photoanode. iScience 2024; 27:109192. [PMID: 38433924 PMCID: PMC10906510 DOI: 10.1016/j.isci.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.
Collapse
Affiliation(s)
- Wendy Quilumbaquin
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | | - Luis J. Borrero-González
- Laboratorio de Óptica Aplicada, Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - José R. Mora
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Vladimir Valle
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Luis D. Loor-Urgilés
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | |
Collapse
|
3
|
Castillo-Cabrera GX, Pliego-Cerdán CI, Méndez E, Espinoza-Montero PJ. Step-by-step guide for electrochemical generation of highly oxidizing reactive species on BDD for beginners. Front Chem 2024; 11:1298630. [PMID: 38239927 PMCID: PMC10794620 DOI: 10.3389/fchem.2023.1298630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Selecting the ideal anodic potential conditions and corresponding limiting current density to generate reactive oxygen species, especially the hydroxyl radical (•OH), becomes a major challenge when venturing into advanced electrochemical oxidation processes. In this work, a step-by-step guide for the electrochemical generation of •OH on boron-doped diamond (BDD) for beginners is shown, in which the following steps are discussed: i) BDD activation (assuming it is new), ii) the electrochemical response of BDD (in electrolyte and ferri/ferro-cyanide), iii) Tafel plots using sampled current voltammetry to evaluate the overpotential region where •OH is mainly generated, iv) a study of radical entrapment in the overpotential region where •OH generation is predominant according to the Tafel plots, and v) finally, the previously found ideal conditions are applied in the electrochemical degradation of amoxicillin, and the instantaneous current efficiency and relative cost of the process are reported.
Collapse
Affiliation(s)
| | | | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | |
Collapse
|
4
|
Muthukumaran MK, Govindaraj M, Raja BK, J AS. In situ synthesis of polythiophene encapsulated 2D hexagonal boron nitride nanocomposite based electrochemical transducer for detection of 5-fluorouracil with high selectivity. RSC Adv 2023; 13:2780-2794. [PMID: 36756436 PMCID: PMC9850362 DOI: 10.1039/d2ra07147a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
It is difficult for the scientific community to develop a nonenzymatic sensing platform for extremely sensitive and selective detection of specific biomolecules, antibiotics, food adulterants, heavy metals, etc. One of the most significant chemotherapy drugs, 5-fluorouracil (5-Fu), which is used to treat solid malignancies, has a fluorine atom in the fifth position of the uracil molecule. Recognizing the secure and effective dosing of drugs for chemotherapy continues to be a critical concern in cancer disease management. The maintenance of the optimal 5-Fu concentration is dependent on the presence of 5-Fu in biofluids. Herein we reported a conducting polymer encapsulated 2D material, PTh/h-BN for the efficient electrochemical detection of anticancer drug 5-Fu. Furthermore, the synthesized PTh/h-BN nanocomposite was confirmed by the High-Resolution Transmission Electron Microscope (HR-TEM), High-Resolution Scanning Electron Microscope (HR-SEM), X-ray diffraction (XRD), and Fourier-Transform Infrared Spectroscopy (FT-IR). The electrical resistance of PTh/h-BN modified GCE and its sensing performance towards 5-Fu were tested using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) studies respectively. The analytical performance of our proposed catalyst was tested using Differential Pulse Voltammetry (DPV), and the amperometry (i-t curve) method. From the results, our proposed PTh/h-BN nanocomposite-modified GCE shows enhanced sensing performance due to higher redox peak currents, large active surface area, and high electrical conductivity. Moreover, the nanohybrid shows enhanced sensing performances with quick response time, wide linear range, the lowest limit of detection, high sensitivity, and high selectivity in the presence of various interferents. Finally, the practical applicability of the proposed sensor was tested with real-world samples with very good recovery percentages.
Collapse
Affiliation(s)
- Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Arockia Selvi J
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
5
|
Gül KARAOGLU A, ÖZTÜRK D, AKYOL A, KARA S. PCT Degradation with Electrooxidation (EOx) and Ultrasound (US) Hybrid Process Using Different Type Electrodes: BDD, Ti/PbO2 and Ti/Pt. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Sigcha-Pallo C, Peralta-Hernández JM, Alulema-Pullupaxi P, Carrera P, Fernández L, Pozo P, Espinoza-Montero PJ. Photoelectrocatalytic degradation of diclofenac with a boron-doped diamond electrode modified with titanium dioxide as a photoanode. ENVIRONMENTAL RESEARCH 2022; 212:113362. [PMID: 35525294 DOI: 10.1016/j.envres.2022.113362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The electrophoretic deposition of titanium dioxide (TiO2) nanoparticles (Degussa P25) onto a boron-doped diamond (BDD) substrate was carried out to produce a photoanode (TiO2/BDD) to apply in the degradation and mineralization of sodium diclofenac (DCF-Na) in an aqueous medium using photoelectrocatalysis (PEC). This study was divided into three stages: i) photoanode production through electrophoretic deposition using three suspensions (1.25%, 2.5%, 5.0% w/v) of TiO2 nanoparticles, applying 4.8 V for 15 and 20 s; ii) characterization of the TiO2/BDD photoanode using scanning electron microscopy and cyclic voltammetry response with the [Fe(CN)6]3-/4- redox system; iii) degradation of DCF-Na (25 mg L-1) through electrochemical oxidation (EO) on BDD and PEC on TiO2/BDD under dark and UVC-light conditions. The degradation of DCF-Na was evaluated using high-performance liquid chromatography and UV-Vis spectroscopy, and its mineralization measured using total organic carbon and chemical oxygen demand. The results showed that after 2 h, DCF-Na degradation and mineralization reached 98.5% and 80.1%, respectively, through PEC on the TiO2/BDD photoanode at 2.2 mA cm-2 under UVC illumination, while through EO on BDD applying 4.4 mA cm-2, degradation and mineralization reached 85.6% and 76.1%, respectively. This difference occurred because of the optimal electrophoretic formation of a TiO2 film with a 9.17 μm thickness on the BDD (2.5% w/v TiO2, time 15 s, 4.8 V), which improved the electrocatalysis and oxidative capacity of the TiO2/BDD photoanode. Additionally, PEC showed a lower specific energy consumption (1.55 kWh m-3). Thus, the use of nanostructured TiO2 films deposited on BDD is an innovative photoanode alternative for the photoelectrocatalytic degradation of DCF-Na, which substantially improves the degradation capacity of bare BDD.
Collapse
Affiliation(s)
- Carol Sigcha-Pallo
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador; Escuela Politécnica Nacional, Departamento de Ingeniería Civil y Ambiental, Ladrón de Guevara E11-253, Apartado Postal: 17-01-2759, Quito, Ecuador
| | - Juan M Peralta-Hernández
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Cerro de La Venda S/n, Pueblito de Rocha, Guanajuato, 36040, Mexico
| | - Paulina Alulema-Pullupaxi
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | | | - Lenys Fernández
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | - Pablo Pozo
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador
| | - Patricio J Espinoza-Montero
- Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador.
| |
Collapse
|
7
|
Ebratkhahan M, Zarei M, Babaei T, Hosseini MG, Hosseini MM, Fathipour Z. Efficient electrochemical removal of 5-fluorouracil pharmaceutical from wastewater by mixed metal oxides via anodic oxidation process. CHEMOSPHERE 2022; 296:134007. [PMID: 35181426 DOI: 10.1016/j.chemosphere.2022.134007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the entry of organic compounds into water resources is one of the leading global concerns due to the lack of water resources and rapid population growth. In this research, anodic oxidation (AO) method was used to remove 5-fluorouracil (5-FU) from aqueous solutions via Ni/RuO2 and Ti/IrO2-TiO2-RuO2 electrodes as cathode and anode, respectively. For this purpose, the characterization analysis of the electrodes, including X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and atomic force microscopy were performed. The electrochemical performance of the anode was investigated via cyclic voltammetry analysis. Then, the effect of operational variables, including applied current (mA), initial pH of the solution, initial 5-FU concentration (mg/L), and process time (min) on the 5-FU removal efficiency under the AO process was evaluated via artificial neural network (ANN) modeling. The results revealed that the maximum 5-FU removal efficiency was 96.96%. The applied current intensity, pH, initial 5-FU concentration, and process time were 300 mA, 5, 20 mg/L, and 140 min, respectively. Moreover, the investigation of 5-FU removal by-products and mineralization efficiency of the AO process was carried out via gas chromatography-mass spectrometry and total organic carbon analysis, respectively. The total organic carbon mineralization efficiency was 84.80% after 6 h of reaction time. The reusability and stability of the Ti/IrO2-TiO2-RuO2 anode on 5-FU removal efficiency were measured and showed an approximately 5% decay in 5-FU removal efficiency after eight consecutive runs. The overall results and analysis confirmed this method is capable of removing 5-FU through Ti/IrO2-TiO2-RuO2 anode and Ni/RuO2 cathode from aqueous medium.
Collapse
Affiliation(s)
- Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Tala Babaei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mir Ghasem Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz, Iran.
| | - Mir Majid Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz, Iran.
| | - Zahra Fathipour
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
8
|
Technical–Economic Analysis of Hydrogen Peroxide Activation by a Sacrificial Anode: Comparison of Two Exchange Membranes. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00689-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Espinoza-Montero PJ, Vega-Verduga C, Alulema-Pullupaxi P, Fernández L, Paz JL. Technologies Employed in the Treatment of Water Contaminated with Glyphosate: A Review. Molecules 2020; 25:E5550. [PMID: 33256069 PMCID: PMC7730355 DOI: 10.3390/molecules25235550] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Glyphosate [N-(phosphonomethyl)-glycine] is a herbicide with several commercial formulations that are used generally in agriculture for the control of various weeds. It is the most used pesticide in the world and comprises multiple constituents (coadjutants, salts, and others) that help to effectively reach the action's mechanism in plants. Due to its extensive and inadequate use, this herbicide has been frequently detected in water, principally in surface and groundwater nearest to agricultural areas. Its presence in the aquatic environment poses chronic and remote hazards to human health and the environment. Therefore, it becomes necessary to develop treatment processes to remediate aquatic environments polluted with glyphosate, its metabolites, and/or coadjutants. This review is focused on conventional and non-conventional water treatment processes developed for water polluted with glyphosate herbicide; it describes the fundamental mechanism of water treatment processes and their applications are summarized. It addressed biological processes (bacterial and fungi degradation), physicochemical processes (adsorption, membrane filtration), advanced oxidation processes-AOPs (photocatalysis, electrochemical oxidation, photo-electrocatalysis, among others) and combined water treatment processes. Finally, the main operating parameters and the effectiveness of treatment processes are analyzed, ending with an analysis of the challenges in this field of research.
Collapse
Affiliation(s)
- Patricio J. Espinoza-Montero
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Carolina Vega-Verduga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Paulina Alulema-Pullupaxi
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Jose L. Paz
- Departamento de Física, Escuela Politécnica Nacional, Ladrón de Guevara, Quito 17-12-866, Ecuador;
| |
Collapse
|
10
|
He Y, Zhang P, Huang H, Wang X, Chen B, Guo Z, Lin H. Electrochemical degradation of herbicide diuron on flow-through electrochemical reactor and CFD hydrodynamics simulation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Pieczyńska A, Ochoa-Chavez SA, Wilczewska P, Bielicka-Giełdoń A, Siedlecka EM. Insights into Mechanisms of Electrochemical Drug Degradation in Their Mixtures in the Split-Flow Reactor. Molecules 2019; 24:E4356. [PMID: 31795278 PMCID: PMC6930462 DOI: 10.3390/molecules24234356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022] Open
Abstract
The recirculating split-flow batch reactor with a cell divided into anolyte and catholyte compartments for oxidation mixture of cytostatic drugs (CD) was tested. In this study, kinetics and mechanisms of electrochemical oxidization of two mixtures: 5-FU/CP and IF/CP were investigated. The order of the CD degradation rate in single drug solutions and in mixtures was found to be 5-FU < CP < IF. In the 5-FU/CP mixture, kapp of 5-FU increased, while kapp of CP decreased comparing to the single drug solutions. No effect on the degradation rate was found in the CP/IF mixture. The presence of a second drug in the 5-FU/CP mixture significantly altered mineralization and nitrogen removal efficiency, while these processes were inhibited in IF/CP. The experiments in the different electrolytes showed that •OH and sulphate active species can participate in the drug's degradation. The kapp of the drugs was accelerated by the presence of Cl- ions in the solution. Chlorine active species played the main role in the production of gaseous nitrogen products and increased the mineralisation. Good results were obtained for the degradation and mineralisation processes in mixtures of drugs in municipal wastewater-treated effluent, which is beneficial from the technological and practical point of view.
Collapse
Affiliation(s)
- Aleksandra Pieczyńska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| | - Stalin Andres Ochoa-Chavez
- Centro de Investigación y Control Ambiental, Departamento de Ingeniería Civil y Ambiental, Escurla Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador;
| | - Patrycja Wilczewska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| | - Aleksandra Bielicka-Giełdoń
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| | - Ewa M. Siedlecka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| |
Collapse
|
12
|
Espinoza LC, Aranda M, Contreras D, Henríquez A, Salazar R. Effect of the sp
3
/sp
2
Ratio in Boron‐Doped Diamond Electrodes on the Degradation Pathway of Aniline by Anodic Oxidation. ChemElectroChem 2019. [DOI: 10.1002/celc.201901218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- L. Carolina Espinoza
- Laboratorio de Electroquímica del Medio Ambiente. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH Av. Libertador Bernardo O'Higgins 3363 Casilla 40 Santiago Chile
| | - Mario Aranda
- Laboratorio de Estudios Avanzados en Fármacos y Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de FarmaciaUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - David Contreras
- Centro de Biotecnología, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - Adolfo Henríquez
- Centro de Biotecnología, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, UdeC Av. Víctor Lamas 1290 Casilla 160-C Concepción Chile
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH Av. Libertador Bernardo O'Higgins 3363 Casilla 40 Santiago Chile
| |
Collapse
|
13
|
Bielicka–Giełdoń A, Wilczewska P, Malankowska A, Szczodrowski K, Ryl J, Zielińska-Jurek A, Siedlecka EM. Morphology, surface properties and photocatalytic activity of the bismuth oxyhalides semiconductors prepared by ionic liquid assisted solvothermal method. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhang M, Shi Q, Song X, Wang H, Bian Z. Recent electrochemical methods in electrochemical degradation of halogenated organics: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10457-10486. [PMID: 30798495 DOI: 10.1007/s11356-019-04533-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Halogenated organics are widely used in modern industry, agriculture, and medicine, and their large-scale emissions have led to soil and water pollution. Electrochemical methods are attractive and promising techniques for wastewater treatment and have been developed for degradation of halogenated organic pollutants under mild conditions. Electrochemical techniques are classified according to main reaction pathways: (i) electrochemical reduction, in which cleavage of C-X (X = F, Cl, Br, I) bonds to release halide ions and produce non-halogenated and non-toxic organics and (ii) electrochemical oxidation, in which halogenated organics are degraded by electrogenerated oxidants. The electrode material is crucial to the degradation efficiency of an electrochemical process. Much research has therefore been devoted to developing appropriate electrode materials for practical applications. This paper reviews recent developments in electrode materials for electrochemical degradation of halogenated organics. And at the end of this paper, the characteristics of new combination methods, such as photocatalysis, nanofiltration, and the use of biochemical method, are discussed.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qin Shi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Xiaozhe Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Nidheesh PV, Divyapriya G, Oturan N, Trellu C, Oturan MA. Environmental Applications of Boron‐Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem 2019. [DOI: 10.1002/celc.201801876] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur, Maharashtra India
| | - G. Divyapriya
- Environmental Water Resources Engineering DivisionDepartment of Civil EngineeringIndian Institute of Technology Madra Chennai, Tamilnadu India
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Mehmet A. Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| |
Collapse
|