1
|
Tural B, Ertaş E, Batıbay H, Tural S. The Impact of Pistacia khinjuk plant gender on silver nanoparticle synthesis: Are extracts of root obtained from female plants preferentially used? Biochem Biophys Res Commun 2025; 746:151257. [PMID: 39754972 DOI: 10.1016/j.bbrc.2024.151257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Pistacia khinjuk, a dioecious plant native to Southeast Anatolia, Turkey, features distinct male and female individuals with varying bioactive compound profiles. This study investigates the gender-specific phytochemical composition of root extracts from male and female Pistacia khinjuk plants and their influence on the green synthesis of silver nanoparticles. Using natural bioactive compounds such as polyphenols, flavonoids, alkaloids, and terpenoids as reducing and stabilizing agents, the study demonstrates significant differences between the nanoparticles synthesized from male and female root extracts. Female root extracts, with their higher polyphenolic content, produced silver nanoparticles that were smaller in size (150.1 nm) and more stable, as indicated by a zeta potential of -32.5 mV. In comparison, the silver nanoparticles synthesized from male root extracts were larger in size (213.8 nm) and exhibited a less negative zeta potential of -21.36 mV. Additionally, silver nanoparticles derived from female root extracts showed superior antioxidant activity and greater antibacterial efficacy against Staphylococcus aureus and Escherichia coli, as reflected in larger inhibition zones. These findings highlight the potential of Pistacia khinjuk root extracts for sustainable nanoparticle synthesis and underscore the value of gender-specific bioactive compounds in advancing green technologies and biomedical applications.
Collapse
Affiliation(s)
- Bilsen Tural
- Department of Nanotechnology, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey.
| | - Erdal Ertaş
- Department of Food Processing, Technical Sciences Vocational School, Batman University, Batman, Turkey.
| | - Hayri Batıbay
- Department of Chemistry, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey.
| | - Servet Tural
- Department of Nanotechnology, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey.
| |
Collapse
|
2
|
Qi LX, Wang XT, Huang JP, Yue TY, Lu YS, San DM, Xu YX, Han YT, Guo XY, Xie WD, Zhou YX. Silver Nanoparticles Encapped by Dihydromyricetin: Optimization of Green Synthesis, Characterization, Toxicity, and Anti-MRSA Infection Activities for Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:5255. [PMID: 38791295 PMCID: PMC11120860 DOI: 10.3390/ijms25105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
To achieve the environmentally friendly and rapid green synthesis of efficient and stable AgNPs for drug-resistant bacterial infection, this study optimized the green synthesis process of silver nanoparticles (AgNPs) using Dihydromyricetin (DMY). Then, we assessed the impact of AgNPs on zebrafish embryo development, as well as their therapeutic efficacy on zebrafish infected with Methicillin-resistant Staphylococcus aureus (MRSA). Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) analyses revealed that AgNPs possessed an average size of 23.6 nm, a polymer dispersity index (PDI) of 0.197 ± 0.0196, and a zeta potential of -18.1 ± 1.18 mV. Compared to other published green synthesis products, the optimized DMY-AgNPs exhibited smaller sizes, narrower size distributions, and enhanced stability. Furthermore, the minimum concentration of DMY-AgNPs required to affect zebrafish hatching and survival was determined to be 25.0 μg/mL, indicating the low toxicity of DMY-AgNPs. Following a 5-day feeding regimen with DMY-AgNP-containing food, significant improvements were observed in the recovery of the gills, intestines, and livers in MRSA-infected zebrafish. These results suggested that optimized DMY-AgNPs hold promise for application in aquacultures and offer potential for further clinical use against drug-resistant bacteria.
Collapse
Affiliation(s)
- Ling-Xiao Qi
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xue-Ting Wang
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Jin-Ping Huang
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Ting-Yan Yue
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yun-Shu Lu
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Dong-Mei San
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yu-Xun Xu
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Ya-Tong Han
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xiang-Yi Guo
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Wei-Dong Xie
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| |
Collapse
|
3
|
Li JJ, Yue YX, Shi SJ, Xue JZ. Investigation on toxicity mechanism of halogenated aromatic disinfection by-products to zebrafish based on molecular docking and QSAR model. CHEMOSPHERE 2023; 341:139916. [PMID: 37633607 DOI: 10.1016/j.chemosphere.2023.139916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Halogenated aromatic disinfection by-products (DBPs) are a new type of DBPs that have been detected in various water bodies. Previous studies have shown that most of them can induce in vivo toxicity in aquatic organisms. In this study, in order to further investigate the toxic effects and mechanisms of aromatic DBPs, the toxicity and ecological risks of 10 halogenated aromatic DBPs were assessed using the model organism zebrafish. It was found that the toxicity of DBPs was related to the number, type, and position of halogen and the type of substituent, and the 24 h-toxicity value of DBPs in this experiment could replace their 96 h-toxicity value to reduce the test time and save the test cost. Halogenated phenol and halogenated nitrophenol were more toxic, but the current ecological risks of DBPs were relatively low. In addition, the toxicity mechanism of DBPs was analyzed based on molecular docking and quantitative structure-activity relationship (QSAR) models. The molecular docking results showed that all 10 DBPs could bind to zebrafish's catalase (CAT), cytochrome P450 (CYP450), p53, and acetylcholinesterase (AChE), thereby affecting their normal life activities. QSAR models indicated that the toxicity of halogenated aromatic DBPs to zebrafish mainly depended on their hydrophobicity (log D), the interaction with CAT (ECAT), and hydrogen bonding acidity (A).
Collapse
Affiliation(s)
- Jin Jie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Ya Xin Yue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Sheng Jie Shi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jun Zeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| |
Collapse
|
4
|
Nie M, Zou C, Peng L, Wu Z, You F. Establishment and application of four long-term culture cell lines of the olive flounder Paralichthys olivaceus blastocysts. Comp Biochem Physiol C Toxicol Pharmacol 2023; 265:109536. [PMID: 36584834 DOI: 10.1016/j.cbpc.2022.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Four new embryonic cell lines derived from blastocysts of the olive flounder Paralichthys olivaceus, an important commercial marine fish, were established and characterized. They were designated as PoEFCI, PoEFCII, PoEFCIII, and PoEFCIV and were all fibroblastic cells. The cells were cultured in DMEM/F-12 medium supplemented with antibiotics, FBS, and growth factors at temperature of 25 °C and subcultured for >100 passages over 18 months. The origin of the cell lines was confirmed by examining the partial sequences of the cytochrome oxidase c subunit I (COI) gene of the flounder mitochondrial DNA (mtDNA). The four cell lines showed different growth curve patterns. According to the results of gene and protein expression and enzyme activity, the cell lines PoEFCI, PoEFCII, and PoEFC III could be pluripotent. The cells of all four cell lines were also successfully transfected with the green fluorescent protein (GFP) reporter gene, suggesting that they could be used to study gene function in the flounder or other fish. More importantly, PoEFCI-III were sensitive to chromium (Cr) and red sea bream Pagrus major iridovirus (RSIV), so they could be used as a powerful tool for the study of the toxicological investigation of heavy metals and RSIV in fish. Therefore, these cell lines would be useful for biotechnological and toxicological research on marine fish as an in vitro biological system.
Collapse
Affiliation(s)
- Miaomiao Nie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining 810016, PR China
| | - Congcong Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Limin Peng
- Shandong Open University, Jinan 250014, PR China
| | - Zhihao Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Feng You
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
5
|
Singh K, Verma SK, Patel P, Panda PK, Sinha A, Das B, Raina V, Suar M, Ray L. Hydoxylated β- and δ-Hexacholorocyclohexane metabolites infer influential intrinsic atomic pathways interaction to elicit oxidative stress-induced apoptosis for bio-toxicity. ENVIRONMENTAL RESEARCH 2022; 212:113496. [PMID: 35609655 DOI: 10.1016/j.envres.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Hexachlorocyclohexane (HCH) has been recognized as an effective insecticide to protect crops against grasshoppers, cohort insects, rice insects, wireworms, and other agricultural pests and; for the control of vector-borne diseases such as malaria. It is a cyclic, saturated hydrocarbon, which primarily exists as five different stable isomers in the environment. Though the use of HCH is banned in most countries owing to its adverse effects on the environment, its metabolites still exist in soil and groundwater, because of its indiscriminate applications. In this study, a dose-dependent toxicity assay of the HCH isomers isolated from soil and water samples of different regions of Odisha, India was performed to assess the in vivo developmental effects and oxidative stress in zebrafish embryos. Toxicity analysis revealed a significant reduction in hatching and survivability rate along with morphological deformities (edema, tail malformations, spinal curvature) upon an increase in the concentration of HCH isomers; beta isomer exhibiting maximum toxicity (p < 0.05). Oxidative stress assay showed that ROS and apoptosis were highest in the fish exposed to β-2 and δ-2 isomers of HCH in comparison to the untreated one. Zebrafish proved to be a useful biological model to assess the biological effects of HCH isomers. In addition, the results suggest the implementation of precautionary measures to control the use of organochlorine compounds that can lead to a decrease in the HCH isomers in the field for a healthier environment.
Collapse
Affiliation(s)
- Khushbu Singh
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Biswadeep Das
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Lopamudra Ray
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; School of Law, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
6
|
Rakhshan K, Dalouchi F, Sharifiaghdam Z, Safaei A, Jahanshahi F, Azizi Y. Modulation of Apoptosis and Oxidative Stress with Nesfatin-1 in Doxorubicin Induced Cardiotoxicity in Male Rat. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Bhattacharjee R, Nandi A, Mitra P, Saha K, Patel P, Jha E, Panda PK, Singh SK, Dutt A, Mishra YK, Verma SK, Suar M. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater Today Bio 2022; 15:100291. [PMID: 35711292 PMCID: PMC9194658 DOI: 10.1016/j.mtbio.2022.100291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Foodborne infection is one of the leading sources of infections spreading across the world. Foodborne pathogens are recognized as multidrug-resistant (MDR) pathogens posing a significant problem in the food industry and healthy consumers resulting in enhanced economic burden, and nosocomial infections. The continued search for enhanced microbial detection tools has piqued the interest of the CRISPR-Cas system and Nanoparticles. CRISPR-Cas system is present in the bacterial genome of some prokaryotes and is repurposed as a theragnostic tool against MDR pathogens. Nanoparticles and composites have also emerged as an efficient tool in theragnostic applications against MDR pathogens. The diagnostic limitations of the CRISPR-Cas system are believed to be overcome by a synergistic combination of the nanoparticles system and CRISPR-Cas using nanoparticles as vehicles. In this review, we have discussed the diagnostic application of CRISPR-Cas technologies along with their potential usage in applications like phage resistance, phage vaccination, strain typing, genome editing, and antimicrobial. we have also elucidated the antimicrobial and detection role of nanoparticles against foodborne MDR pathogens. Moreover, the novel combinatorial approach of CRISPR-Cas and nanoparticles for their synergistic effects in pathogen clearance and drug delivery vehicles has also been discussed.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Priya Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Koustav Saha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Sushil Kumar Singh
- DBT- NECAB, Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to evaluate the effect of high hydrostatic pressure (HHP) on the in vitro developmental abilities of nano-transfected rabbit zygotes, their transfection efficiency, and the molecular quality of the blastocysts generated. This quality was assessed by estimating the quantitative profiles of Oct4, Casp7, and Bcl2 mRNA transcripts. The nano-transfection efficiencies of zygotes that had been pre-treated with either 20 MPa or 40 MPa of HHP (13.5% and 13.7%, respectively) were insignificantly lower than those found in zygotes not exposed to HHP prior to their nano-transfection (20.1%; P≥0.05). Moreover, applying HHP treatment with the parameters of 20 MPa and 40 MPa followed by the nano-transfection of zygotes brought about an insignificant decrease in the rates of embryos at the blastocyst stage (30.4% and 23.0%, respectively) as compared to the control group of nano-transfected zygotes (40.4%; P≥0.05). Furthermore, analyzing the transcriptional activity of Oct4, Bcl2, and Casp7 genes revealed that HHP enhances the relative abundance (RA) of all mRNA transcripts in blastocysts derived from non-transfected rabbit zygotes. In turn, the augmented RAs found in the pro-apoptotic Casp7 and anti-apoptotic Bcl-2 transcripts confirmed the onset and progression of programmed cell death in blastocysts developed from nano-transfected zygotes that had undergone HHP pre-treatment. The conceptualization based not only on a novel nano-transfection approach used to genetically modify in vivo-fertilized rabbit zygotes but also on their HHP pre-treatment is elaborated here for the first time, with an emphasis on further investigations aimed at producing transgenic rabbit and other mammalian species embryos by somatic cell cloning.
Collapse
|
9
|
Elfawy HA, Anupriya S, Mohanty S, Patel P, Ghosal S, Panda PK, Das B, Verma SK, Patnaik S. Molecular toxicity of Benzo(a)pyrene mediated by elicited oxidative stress infer skeletal deformities and apoptosis in embryonic zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147989. [PMID: 34323819 DOI: 10.1016/j.scitotenv.2021.147989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Benzo(a)pyrene (BaP) has become an integral component of disposed of plastic waste, organic pollutants, and remnants of combustible materials in the aquatic environment due to their persistent nature. The accumulation and integration of these polycyclic aromatic hydrocarbons (PAHs) have raised concern to human health and ecological safety. This study assessed the BaP-induced in vivo molecular toxicity with embryonic zebrafish inferred by oxidative stress and apoptosis. BaP was found to induce morphological and physiological abnormalities like delayed hatching (p < 0.05). Computational analysis demonstrated the high-affinity interaction of BaP with the zebrafish hatching enzyme (ZHE1) with Arg, Cys, Ala, Tyr, and Phe located at the active site revealing the influence of BaP on delayed hatching due to alteration of the enzyme structure. RT-PCR analysis revealed significant down-regulation of the skeletal genes Sox9a, SPP1/OPN, and Col1a1 (p < 0.05) genes. The cellular investigations unraveled that the toxicity of BaP extends to the skeletal regions of zebrafish (head, backbone, and tail) because of the elicited oxidative stress leading to apoptosis. The study extended the horizon of understanding of BaP toxicity at the molecular level which will enhance the indulgent and designing of techniques for better ecological sustainability.
Collapse
Affiliation(s)
- Hasnaa A Elfawy
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India
| | - S Anupriya
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India
| | - Swabhiman Mohanty
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India
| | - Sayam Ghosal
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Sweden
| | - Biswadeep Das
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Sweden.
| | - Srinivas Patnaik
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
10
|
Panda PK, Verma SK, Suar M. Nanoparticle-biological interactions: the renaissance of bionomics in the myriad nanomedical technologies. Nanomedicine (Lond) 2021; 16:2249-2254. [PMID: 34544260 DOI: 10.2217/nnm-2021-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Suresh K Verma
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics & Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| |
Collapse
|
11
|
Sheel R, Kumari P, Panda PK, Jawed Ansari MD, Patel P, Singh S, Kumari B, Sarkar B, Mallick MA, Verma SK. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P.niruri contrived antibacterial iron oxide nanoparticles with zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115482. [PMID: 32889517 DOI: 10.1016/j.envpol.2020.115482] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 05/27/2023]
Abstract
Extensive use of magnetic iron oxide (magnetite) nanoparticles (IONP) has raised concerns about their biocompatibility. It has also stimulated the search for its green synthesis with greater biocompatibility. Addressing the issue, this study investigates the molecular nanotoxicity of IONP with embryonic and adult zebrafish, and reveal novel green fabrication of iron oxide nanoparticles (P-IONP) using medicinal plant extract of Phyllanthus niruri. The synthesized P-IONP was having a size of 42 ± 08 nm and a zeta potential of -38 ± 06 mV with hydrodynamic diameter of 109 ± 09 nm and 90emu/g magnetic saturation value. High antibacterial efficacy of P-IONP was found against E.coli. Comparative in vivo biocompatibility assessment with zebrafish confirmed higher biocompatibility of P-IONP compared to commercial C-IONP in the relevance of mortality rate, hatching rate, heart rate, and morphological abnormalities. LC50 of P-IONP and C-IONP was 202 μg/ml and 126 μg/ml, respectively. Molecular nano-biocompatibility analysis revealed the phenomenon as an effect of induced apoptosis lead by dysregulation of induced oxidative stress due to structural and functional influence of IONP to Sod1 and Tp53 proteins through intrinsic atomic interaction.
Collapse
Affiliation(s)
- Rishav Sheel
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribag, 825301, India
| | - Puja Kumari
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden
| | - Md Danish Jawed Ansari
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sonal Singh
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Baby Kumari
- University Department of Biotechnology, Vinoba Bhave University, Hazaribag, 825301, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology (IIAB), IINRG Campus, Namkum Ranchi, Jharkhand, 834010, India
| | - M Anwar Mallick
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribag, 825301, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
12
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
13
|
Park SJ. Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int J Nanomedicine 2020; 15:5783-5802. [PMID: 32821101 PMCID: PMC7418457 DOI: 10.2147/ijn.s254808] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon21936, Korea
| |
Collapse
|
14
|
Yen HJ, Horng JL, Yu CH, Fang CY, Yeh YH, Lin LY. Toxic effects of silver and copper nanoparticles on lateral-line hair cells of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105273. [PMID: 31445453 DOI: 10.1016/j.aquatox.2019.105273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The potential toxicity of nanoparticles (NPs) to the early stages of fish is still unclear. In this study, we investigated the toxic effects of silver (AgNPs) and copper nanoparticles (CuNPs) on lateral-line hair cells of zebrafish embryos. Zebrafish embryos were incubated in different concentrations of AgNPs and CuNPs at 0˜96 h post-fertilization (hpf). Both AgNPs and CuNPs were found to cause toxic effects in zebrafish embryos in a dose-dependent manner. Values of the 96-h 50% lethal concentration (LC50) of AgNPs and CuNPs were 6.1 ppm (56.5 μM) and 2.61 ppm (41.1 μM), respectively. The number of FM1-43-labeled hair cells and the microstructure of hair bundles were significantly impaired by AgNPs [≥1 ppm (9.3 μM)] and CuNPs [≥0.01 ppm (0.16 μM)]. Ca2+ influxes at hair bundles of hair cells were measured with a scanning ion-selective microelectrode technique to evaluate the function of hair cells. AgNPs [≥0.1 ppm (0.9 μM)] and CuNPs [≥0.01 ppm (0.16 μM)] were both found to significantly reduce Ca2+ influxes. Similar toxic effects were also found in hatched embryos subjected to 4 h of exposure (96˜100 hpf) to AgNPs and CuNPs. This study revealed that lateral-line hair cells of zebrafish are susceptible to AgNPs and CuNPs, and these contaminants in aquatic environments could pose a threat to fish survival.
Collapse
Affiliation(s)
- Hsiu-Ju Yen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, National Yang-Ming University, School of Medicine, Faculty of Medicine, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Yu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Ya Fang
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
15
|
Khan I, Bahuguna A, Krishnan M, Shukla S, Lee H, Min SH, Choi DK, Cho Y, Bajpai VK, Huh YS, Kang SC. The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:365-377. [PMID: 31085416 DOI: 10.1016/j.scitotenv.2019.05.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Human health and environment have been continuously getting exposure to toxic chemicals including nanomaterial; therefore, nontoxicity has recently attracted huge amount of attention. In this study, RU-AgNPs were synthesized by a green synthesis procedure and evaluated for their toxicity in human umbilical vein endothelial cells (HUVECs) as well as on zebrafish embryos via apoptotic pathway. The synthesized RU-AgNPs were average in size (20-25 nm) with a negative surface charge of -13.43 mV. As a result, RU-AgNPs potentiated the formation of reactive oxygen species (ROS) in HUVECs as confirmed by the results of immunoblotting analysis using apoptotic markers, such as Bax, Bcl2, and cytochrome C. Moreover, the induction of apoptosis in HUVECs was also authenticated in a dose-dependent manner after the treatment with RU-AgNPs by the Incucyte analysis. In vivo trials conducted on zebrafish visualized the mortality, malformation, and imbalanced in the heart rate, and cell death of the whole embryo, including severe morphological changes in the yolk sac and the tail of zebrafish. Furthermore, the results of western blot analysis demonstrated the increasing intensity of apoptotic biomarkers such as Bax, Bcl2, and Cyto C, including enhanced production of ROS, validating the cell death in zebrafish larvae. In addition, chemically functionalized silver nanoparticles found to be more cytotoxic than biogenic functionalized silver nanoparticles. Above-mentioned findings clearly demonstrate that Ru-AgNPs cause the toxicity via ROS-induced apoptotic pathway. Therefore, it is necessary to decide RU-AgNPs toxicity levels before being used in any biomedical application.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Manigandan Krishnan
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Youngjin Cho
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
16
|
Santhoshkumar J, Sowmya B, Venkat Kumar S, Rajeshkumar S. Toxicology evaluation and antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1016/j.sajce.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
17
|
Kumari P, Panda PK, Jha E, Pramanik N, Nisha K, Kumari K, Soni N, Mallick MA, Verma SK. Molecular insight to in vitro biocompatibility of phytofabricated copper oxide nanoparticles with human embryonic kidney cells. Nanomedicine (Lond) 2018; 13:2415-2433. [DOI: 10.2217/nnm-2018-0175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the biocompatibility of green synthesized copper oxide nanoparticles (CuO Np) using floral extract of Calotropis gigantea in room condition. Materials & methods: Green synthesized and characterized CuO Np was evaluated for their cellular and molecular biocompatibility by experimentally and computational molecular docking. Results: Synthesized CuO NP was found to have a size 32 ± 09 nm with ζ potential -35 ± 12 mV. LC50 value was found to be 190 μg/ml. In vitro and in silico cytotoxicity analysis with HEK293 cells revealed the cytotoxic effect of CuO Np as consequences of interaction with histidine and arginine amino acid residues of Sod3 and p53 proteins via hydrogen bond of length 3.09 and 3.32 Å leading to oxidative stress ensuing toward apoptosis and cell cycle arrest. Conclusion: The outcomes proved the synthesized material as an alternative to the conventional method of synthesizing copper nanoparticles for biomedical and clinical applications.
Collapse
Affiliation(s)
- Puja Kumari
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Pritam Kumar Panda
- Division of Pediatric Hematology & Oncology, University Children's Hospital, University of Freiburg, 79106, Germany
| | - Ealisha Jha
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, NL A1C 5S7 Canada
| | - Nandini Pramanik
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Kumari Nisha
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Khushboo Kumari
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Nikita Soni
- School of Biotechnology & Bioinformatics, D. Y. Patil (deemed to be university), Navi Mumbai, India
| | - M Anwar Mallick
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|