1
|
Qiao Z, Liu Y, Hou S, Bai Y, Zhen S, Yang S, Xu H. Spherical fluorinated covalent organic polymer for highly efficient and selective extraction of fipronil and its metabolites in soil. Talanta 2024; 274:126033. [PMID: 38581855 DOI: 10.1016/j.talanta.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Covalent organic polymers (COPs) have garnered considerable attention as promising adsorbents of online solid phase extraction (online SPE). Morphology modulation provides an appealing solution to enhance adsorption efficiency and reduce back-pressure in the absorbent. However, the synthesis of COPs with regular geometric shapes and specific adsorption selectivity remains challenging. In this study, a uniform spherical fluorinated COP (F-sCOP, average diameter: 2.14 μm) was successfully synthesized by Schiff base reaction of 1,3,5-triformylphoroglucinol (TP) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The F-sCOP had a large surface area (BET: 346.2 m2 g-1), remarkable enrichment capacity (enrichment factors: 186-782), high selectivity toward fipronil and its metabolites (adsorption efficiency >93.1%), and admirable service life (>60 times). Based on the adsorbent, a novel μ-matrix cartridge extraction-online-μ-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) method was constructed and used to track trace fipronil and its metabolites in soil. The proposed method exhibited a wide linear range (0.05-1000 ng g-1), low quantitation limits (LOQs: 0.0027-0.011 ng g-1), high recoveries (90.1-119.6%) and good repeatability (RSD ≤10.5%, n = 3) for fipronil analysis. This study paves the way for pesticide analysis in soil risk assessment.
Collapse
Affiliation(s)
- Zhaoyu Qiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Zhen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Blachnio M, Zienkiewicz-Strzalka M. Evaluation of the Dye Extraction Using Designed Hydrogels for Further Applications towards Water Treatment. Gels 2024; 10:159. [PMID: 38534577 DOI: 10.3390/gels10030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024] Open
Abstract
In this work, novel chitosan-silica hydrogels were synthesized and investigated by various complementary techniques. The hydrogels were obtained via the immobilization of chitosan (Ch) on the surface of mesoporous cellular foams (MCFs). The latter silica materials were obtained by a sol-gel process, varying the composition of the reaction mixture (copolymer Pluronic 9400 or Pluronic 10500) and the ageing temperature conditions (80 °C or 100 °C). The role of the silica phase in the hydrogels was the formation of a scaffold for the biopolymeric chitosan component and providing chemical, mechanical, and thermal stability. In turn, the chitosan phase enabled the binding of anionic pollutions from aqueous solutions based on electrostatic interaction mechanisms and hydrogen bonds. To provide information on structural, morphological, and surface properties of the chitosan-silica hydrogels, analyses such as the low-temperature adsorption/desorption of nitrogen, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) were performed. Moreover, the verification of the utility of the chitosan-silica hydrogels as adsorbents for water and wastewater treatment was carried out based on kinetic and equilibrium studies of the Acid Red 88 (AR88) adsorption. Adsorption data were analyzed by applying various equations and discussed in terms of the adsorption on heterogeneous solid-surfaces theory. The adsorption mechanism for the AR88 dye-chitosan-silica hydrogel systems was proposed.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | |
Collapse
|
3
|
Blachnio M, Zienkiewicz-Strzalka M, Derylo-Marczewska A, Nosach LV, Voronin EF. Chitosan-Silica Composites for Adsorption Application in the Treatment of Water and Wastewater from Anionic Dyes. Int J Mol Sci 2023; 24:11818. [PMID: 37511577 PMCID: PMC10380244 DOI: 10.3390/ijms241411818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
A series of new types of composites (biopolymer-silica materials) are proposed as selective and effective adsorbents. A new procedure for the synthesis of chitosan-nanosilica composites (ChNS) and chitosan-silica gel composites (ChSG) using geometrical modification of silica and mechanosorption of chitosan is applied. The highest adsorption efficiency was achieved at pH = 2, hence the desirability of modifications aimed at stabilizing chitosan in such conditions. The amount of chitosan in the synthesis grew to 1.8 times the adsorption capacity for the nanosilica-supported materials and 1.6 times for the silica gel-based composites. The adsorption kinetics of anionic dyes (acid red AR88) was faster for ChNS than for ChSG, which results from a silica-type effect. The various structural, textural, and physicochemical aspects of the chitosan-silica adsorbents were analyzed via small-angle X-ray scattering, scanning electron microscopy, low-temperature gas (nitrogen) adsorption, and potentiometric titration, as well as their adsorption effectiveness towards selected dyes. This indicates the synergistic effect of the presence of dye-binding groups of the chitosan component, and the developed interfacial surface of the silica component in composites.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Liudmyla V Nosach
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
| | - Eugeny F Voronin
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
| |
Collapse
|
4
|
Blachnio M, Kusmierek K, Swiatkowski A, Derylo-Marczewska A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules 2023; 28:5404. [PMID: 37513275 PMCID: PMC10385827 DOI: 10.3390/molecules28145404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing consumption of phenoxyacetic acid-derived herbicides is becoming a major public health and environmental concern, posing a serious challenge to existing conventional water treatment systems. Among the various physicochemical and biological purification processes, adsorption is considered one of the most efficient and popular techniques due to its high removal efficiency, ease of operation, and cost effectiveness. This review article provides extensive literature information on the adsorption of phenoxyacetic herbicides by various adsorbents. The purpose of this article is to organize the scattered information on the currently used adsorbents for herbicide removal from the water, such as activated carbons, carbon and silica adsorbents, metal oxides, and numerous natural and industrial waste materials known as low-cost adsorbents. The adsorption capacity of these adsorbents was compared for the two most popular phenoxyacetic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA). The application of various kinetic models and adsorption isotherms in describing the removal of these herbicides by the adsorbents was also presented and discussed. At the beginning of this review paper, the most important information on phenoxyacetic herbicides has been collected, including their classification, physicochemical properties, and occurrence in the environment.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Krzysztof Kusmierek
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Andrzej Swiatkowski
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
5
|
Bosacka A, Zienkiewicz-Strzalka M, Derylo-Marczewska A, Chrzanowska A, Blachnio M, Podkoscielna B. Physicochemical, structural, and adsorption characteristics of DMSPS- co-DVB nanopolymers. Front Chem 2023; 11:1176718. [PMID: 37448854 PMCID: PMC10338118 DOI: 10.3389/fchem.2023.1176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this work is the synthesis and characterization of the series of S,S'-thiodi-4,1-phenylene bis(thio-methacrylate)-co-divinylbenzene (DMSPS-co-DVB) nanomaterials. The series of new nanopolymers including three mixed systems with different ratios of DMSPS and DVB components, DMSPS-co-DVB = 1:1, DMSPS-co-DVB = 1:2, and DMSPS-co-DVB = 1:3, was synthesized in the polymerization reaction. The research task is to investigate the influence of the reaction mixture composition on morphological, textural, and structural properties of final nanosystems including size, shape, and agglomeration effect. The advanced biphasic nanomaterials enriched with thiol groups were successfully synthesized as potential sorbents for binding organic substances, heavy metals, or biomolecules. To determine the impact of the DMSPS monomer on the final properties of DMSPS-co-DVB nanocomposites, several techniques were applied to reveal the nano-dimensional structure (SAXS), texture (low-temperature nitrogen sorption), general morphology (SEM), acid-base properties (potentiometric titration), and surface chemistry and phase bonding effectiveness (FTIR/ATR spectroscopy). Finally, kinetic studies of aniline sorption on polymeric materials were performed.
Collapse
Affiliation(s)
- Alicja Bosacka
- Department of Fundamental Technologies, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Malgorzata Zienkiewicz-Strzalka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Anna Derylo-Marczewska
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Agnieszka Chrzanowska
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Magdalena Blachnio
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Beata Podkoscielna
- Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Skłodowska University, Lublin, Poland
| |
Collapse
|
6
|
Celis F, Aracena A, García M, Segura del Río R, Sanchez-Cortes S, Leyton P. Plasmon Chemistry on Ag Nanostars: Experimental and Theoretical Raman/SERS Study of the Pesticide Thiacloprid Bond Cleavage by the Plasmon Deactivation Effect. ACS OMEGA 2023; 8:22887-22898. [PMID: 37396249 PMCID: PMC10308575 DOI: 10.1021/acsomega.3c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Silver nanoparticles (AgNPs) were synthetized and employed in surface-enhanced Raman scattering measurements to study the chemical behavior when thiacloprid (Thia) interacts with the surface of Ag nanospheres (AgNSp) and Ag nanostars (AgNSt) upon excitation of the system with a 785 nm laser. Experimental results show that the deactivation of the localized surface plasmon resonance induces structural changes in Thia. When AgNSp are used, it is possible to observe a mesomeric effect in the cyanamide moiety. On the other hand, when AgNSt are employed, it promotes the cleavage of the methylene (-CH2-) bridge in Thia to produce two molecular fragments. To support these results, theoretical calculations based on topological parameters described by the atoms in molecules theory, Laplacian of the electron density at the bond critical point (∇2ρ BCP), Laplacian bond order, and bond dissociation energies were made, confirming that the bond cleavage is centered at the -CH2- bridge in Thia.
Collapse
Affiliation(s)
- Freddy Celis
- Laboratorio
de Procesos Fotónicos y Electroquímicos, Facultad de
Ciencias Naturales y Exactas, Universidad
de Playa Ancha, Valparaíso 2360002, Chile
| | - Andrés Aracena
- Instituto
de Ciencias Naturales, Universidad de las
Américas, Manuel Montt 948, Santiago 7500000, Chile
| | - Macarena García
- Laboratorio
de Procesos Fotónicos y Electroquímicos, Facultad de
Ciencias Naturales y Exactas, Universidad
de Playa Ancha, Valparaíso 2360002, Chile
| | - Rodrigo Segura del Río
- Instituto
de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Santiago Sanchez-Cortes
- Instituto
de Estructura de la Materia, Consejo Superior
de Investigaciones Científicas, CSIC, Serrano 121, Madrid 28006, Spain
| | - Patricio Leyton
- Pontificia
Universidad Católica de Valparaíso, Instituto de Química, Valparaíso 46383, Chile
| |
Collapse
|
7
|
Li C, Zhou Q. Synergistic effect between Ce-doped SnO 2 and bio-carbon for electrocatalytic degradation of tetracycline: Experiment, CFD, and DFT. CHEMOSPHERE 2023; 332:138705. [PMID: 37076085 DOI: 10.1016/j.chemosphere.2023.138705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Carbon-based sandwich-like electrocatalyst with a hierarchical structure, carbon sheet (CS)-loaded Ce-doped SnO2 nanoparticles, were successfully prepared using a simple method, which presented a high-efficiency electrocatalytic performance for tetracycline decomposition. Among them, Sn0.75Ce0.25Oy/CS exhibits superior catalytic activity, such as more than 95% of tetracycline was removed (120 min), and over 90% of total organic carbon was mineralized (480 min). It is found from morphology observation and computational fluid dynamics simulation that the layered structure is conducive to improving the mass transfer efficiency. Through X-Ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectrum, and density functional theory calculation analyze that the structural defect in Sn0.75Ce0.25Oy caused by Ce doping is considered to play the key role. Moreover, electrochemical measurements and degradation experiments further prove that the outstanding catalytic performance is attributable to the initiated synergistic effect established between CS and Sn0.75Ce0.25Oy. These results explain the effectiveness of Sn0.75Ce0.25Oy/CS for the remediation of tetracycline-contaminated water and mitigating the potential risks and imply that the Sn0.75Ce0.25Oy/CS composite has a deeply practical value in tetracycline wastewater degradation and a promise for further application.
Collapse
Affiliation(s)
- Chi Li
- Sate-owned Sida Machinery Manufacturing Company (SSMMC), Yangling, Shaanxi, 712200, China.
| | - Qin Zhou
- Modern Agriculture and the Ecological Environment Academy, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
8
|
Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
9
|
Ge H, Ding K, Guo F, Wu X, Zhai N, Wang W. Green and Superior Adsorbents Derived from Natural Plant Gums for Removal of Contaminants: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:179. [PMID: 36614516 PMCID: PMC9821582 DOI: 10.3390/ma16010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The ubiquitous presence of contaminants in water poses a major threat to the safety of ecosystems and human health, and so more materials or technologies are urgently needed to eliminate pollutants. Polymer materials have shown significant advantages over most other adsorption materials in the decontamination of wastewater by virtue of their relatively high adsorption capacity and fast adsorption rate. In recent years, "green development" has become the focus of global attention, and the environmental friendliness of materials themselves has been concerned. Therefore, natural polymers-derived materials are favored in the purification of wastewater due to their unique advantages of being renewable, low cost and environmentally friendly. Among them, natural plant gums show great potential in the synthesis of environmentally friendly polymer adsorption materials due to their rich sources, diverse structures and properties, as well as their renewable, non-toxic and biocompatible advantages. Natural plant gums can be easily modified by facile derivatization or a graft polymerization reaction to enhance the inherent properties or introduce new functions, thus obtaining new adsorption materials for the efficient purification of wastewater. This paper summarized the research progress on the fabrication of various gums-based adsorbents and their application in the decontamination of different types of pollutants. The general synthesis mechanism of gums-based adsorbents, and the adsorption mechanism of the adsorbent for different types of pollutants were also discussed. This paper was aimed at providing a reference for the design and development of more cost-effective and environmentally friendly water purification materials.
Collapse
Affiliation(s)
- Hanwen Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ke Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xianli Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Naihua Zhai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
10
|
Suryawanshi R, Kurrey R, Sahu S, Ghosh KK. Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications. RSC Adv 2022; 13:701-719. [PMID: 36605643 PMCID: PMC9782860 DOI: 10.1039/d2ra05275j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, graphene quantum dots (GQDs) received huge attention due to their unique properties and potential applicability in different area. Here, we report simple and facile method for the synthesis of GQDs and their functionalization by doping and co-doping using different heteroatom under the optimized conditions. The doping and co-doping of GQDs using boron and nitrogen have been confirmed by FTIR and TEM. The UV-visible and fluorescence techniques have been used to study the optical properties and stability of functionalized GQDs. Further, the screening for enhancement of quantum yields of all GQDs were performed with fluorescence and UV-visible spectra under the optimized conditions. The average QY was obtained as 16.0%, 83.6%, 18.2% and 29.6% for GQDs, B-GQDs, N-GQDs and B,N-GQDs, respectively. The sensor was used to determine paraoxon in water samples. The LOD was observed to be 1.0 × 10-4 M with linearity range of 0.001 to 0.1 M. The RSD was calculated for the developed B,N-GQDs based sensor and observed to be 2.99% with the regression coefficient as 0.997. All the doped, co-doped and un-doped GQDs possess remarkable properties as a fluorescent probe.
Collapse
Affiliation(s)
- Reena Suryawanshi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India
| |
Collapse
|
11
|
Bosacka A, Zienkiewicz-Strzałka M, Deryło-Marczewska A, Chrzanowska A, Wasilewska M, Sternik D. Physicochemical, structural, and adsorption properties of chemically and thermally modified activated carbons. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Rice Straw as Green Waste in a HTiO2@AC/SiO2 Nanocomposite Synthesized as an Adsorbent and Photocatalytic Material for Chlorpyrifos Removal from Aqueous Solution. Catalysts 2022. [DOI: 10.3390/catal12070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2) is utilized to photo breakdown catalytically and adsorb chlorpyrifos insecticide. SEM, TEM, and X-ray diffraction were used to examine HTiO2@AC/SiO2, synthesized through sol–gel synthesis. With an average size of 7–9 nm, the crystallized form of HTiO2 is the most common form found. At varied pH, catalyst doses, agitation speed, initial pesticide concentrations, contact periods, and temperatures, HTiO2@AC/SiO2 was examined for efficiency under visible light and in darkness. Because of the pseudo-second-order kinetics observed for chlorpyrifos, chemisorption is believed to dominate the adsorption process, as indicated by an estimated activation energy of 182.769 kJ/mol, which indicates that chemisorption dominates the adsorption process in this study. The maximal adsorption capacity of chlorpyrifos is 462.6 mg g−1, according to the Langmuir isotherms, which infer this value. When exposed to visible light, the adsorption capacity of HTiO2@AC/SiO2 increased somewhat as the temperature rose (283 k 323 k 373 k), indicating an exothermic change in Gibbs free energy during the process (−1.8 kJ/mol), enthalpy change (−6.02 kJ/mol), and entropy change (0.014 J/mol K), respectively, at 298.15 K. Negative (ΔS) describes a process with decreased unpredictability and suggests spontaneous adsorption. HTiO2@AC/SiO2 may be a promising material.
Collapse
|
13
|
Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12020163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The photocatalytic degradation and adsorption of the oxamyl pesticide utilizing a nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2). Sol-gel Synthesis was used to produce HTiO2@AC/SiO2, which was examined using Scanning Electron Microscopy, Transmission Electron Microscopy, and an X-ray diffractometer. The analyses confirmed that HTiO2 is mainly present in its crystalline form at a size of 7–9 nm. The efficiency of HTiO2@AC/SiO2 was assessed at various pHs, catalyst doses, agitating intensities, initial pesticide concentrations, contact times, and temperatures under visible light and in darkness. Oxamyl adsorption kinetics followed a pseudo-second-order kinetic model, suggesting that the adsorption process is dominated by chemisorption, as supported by a calculated activation energy of −182.769 kJ/mol. The oxamyl adsorption is compatible with Langmuir and Freundlich isotherms, suggesting a maximum adsorption capacity of 312.76 mg g−1. The adsorption capacity increased slightly with increasing temperature (283 K < 323 K < 373 K), suggesting an exothermic process with the Gibbs free energy change ΔG, enthalpy change ΔH, and entropy change ΔS°, being –3.17 kJ/mol, −8.85 kJ/mol, and −0.019 J/mol K, respectively, at 310 K for HTiO2@AC/SiO2 under visible light. This indicates spontaneous adsorption, and negative (ΔS) explain a decreased randomness process. HTiO2@AC/SiO2 would be a promising material.
Collapse
|
14
|
Polyurethane foam sampling for the determination of acetochlor in the air of workplace-gas chromatography. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
A critical green biosynthesis of novel CuO/C porous nanocomposite via the aqueous leaf extract of Ficus religiosa and their antimicrobial, antioxidant, and adsorption properties. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
16
|
Mandal A, Kumar A, Singh N. Sorption mechanisms of pesticides removal from effluent matrix using biochar: Conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113104. [PMID: 34174681 DOI: 10.1016/j.jenvman.2021.113104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Sorption of atrazine (ATZ), imidacloprid (IMIDA) and azoxystrobin (AZOXY) in single-, bi- and ternary-solutes system was modelled using phosphoric acid-treated rice straw biochar (T-RSBC). The T-RSBC showed stronger sorption capacity for IMIDA in single- and bi-solute systems. The Freundlich constant (KFads) in ternary system followed the order: ATZ (222.7) < IMIDA (1314) < AZOXY (1459). Adsorption modeling and molecular dynamics suggested that non-bonding interactions between aromatic groups and electrostatic interactions with the phosphate ester group in T-RSBC played an important role. Enhanced sorption by pore-filling may be attributed to the stacking of pesticide molecules in the form of multilayer. IMIDA was predominantly sorbed by pore-filling mechanism, whereas, ATZ adsorbed by partitioning mechanism. The percent removal of three pesticides in waste water effluent followed the order: AZOXY > IMIDA > ATZ. The Freundlich isotherm based multicomponent Sheindorf-Rebuhn-Sheintuch equation's suggested that the extent of ATZ adsorption, in the presence of co-habiting pesticides, decreased with increase in number of solutes (KiATZ, Singlev> KiATZ, Binary> KiATZ, Ternary). The competitive coefficient values (αATZ/IMIDA, Ternary > αATZ/AZOXY,Ternary) revealed that ATZ adsorption in ternary system was inhibited more by the presence of IMIDA than AZOXY. Findings suggested that biochar with a large fraction of non-carbonized phase promoted non-competitive sorption.
Collapse
Affiliation(s)
- Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Anup Kumar
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, UP, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
17
|
Preparation of a novel zwitterionic graphene oxide-based adsorbent to remove of heavy metal ions from water: Modeling and comparative studies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Bosacka A, Zienkiewicz-Strzalka M, Wasilewska M, Derylo-Marczewska A, Podkościelna B. Physicochemical and Adsorption Characteristics of Divinylbenzene- co-Triethoxyvinylsilane Microspheres as Materials for the Removal of Organic Compounds. Molecules 2021; 26:molecules26082396. [PMID: 33924208 PMCID: PMC8074589 DOI: 10.3390/molecules26082396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022] Open
Abstract
In this work, organic-inorganic materials with spherical shape consisting of divinylbenzene (DVB) and triethoxyvinylsilane (TEVS) were synthesized and investigated by different complementary techniques. The obtained microspheres may be applied as sorbent systems for the purification of organic compounds from water. The hybrid microspheres combine the properties of the constituents depending on the morphologies and interfacial bonding. In this work, the influence of the molar ratio composition of crosslinked monomer (DVB) and silane coupling agent (TEVS) (DVB:TEVS molar ratios: 1:2, 1:1 and 2:1) on the morphology and quality of organic-inorganic materials have been examined. The materials were analysed using small angle X-ray scattering (SAXS) analysis, low-temperature nitrogen sorption, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to provide information on their structural and surface properties. Moreover, thermal analysis was performed to characterize the thermal stability of the studied materials and the adsorbent-adsorbate interactions, while adsorption kinetic studies proved the utility of the synthesized adsorbents for water and wastewater treatment.
Collapse
Affiliation(s)
- Alicja Bosacka
- Correspondence: (A.B.); (A.D.-M.); Tel.: +48-81-53-777-66 (A.D.-M.)
| | | | | | | | | |
Collapse
|
19
|
Garba ZN, Abdullahi AK, Haruna A, Gana SA. Risk assessment and the adsorptive removal of some pesticides from synthetic wastewater: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00109-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The need for environmental protection and remediation processes has been an increasing global concern. Pesticides are used as biological agents, disinfectants, antimicrobials, and also in a mixture of some chemical substances. Their modes of application are through selective dispensing and attenuation processes which act upon any pest that compete with the production, processing, and storage of foods and also in agricultural commodes. The pests might comprise weeds, insects, birds, fish, and microbes.
Main body
Pesticides are commonly found in water surface, landfill leachate, ground water, and wastewater as pollutant. An overview of recently studied adsorption processes for the pesticide elimination from polluted water has been reported in this study utilizing activated carbon, clay materials, biomass materials, metal organic frame work, graphene, and carbon-based materials as well as agricultural wastes as adsorbents. The risk assessment and cost analysis of adsorbents were also provided.
Conclusion
Evidences from literature recommend modified adsorbent and composite materials to have a prospective use in pesticide removal from wastewater. The adsorption data obtained fitted into different isotherm and kinetic models and also the thermodynamic aspect have been discussed.
Graphical abstract
Collapse
|
20
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
21
|
Ighalo JO, Adeniyi AG, Adelodun AA. Recent advances on the adsorption of herbicides and pesticides from polluted waters: Performance evaluation via physical attributes. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Antuña-Nieto C, Rodríguez E, Lopez-Anton MA, García R, Martínez-Tarazona MR. Noble metal-based sorbents: A way to avoid new waste after mercury removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123168. [PMID: 32563907 DOI: 10.1016/j.jhazmat.2020.123168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The development of technologies to control mercury emissions is now a legal requirement imposed by recent international agreements. The use of regenerable sorbents is consistent with this requirement as it allows mercury to be captured from industrial gases without generating new mercury-containing toxic waste. Because regenerable sorbents based on noble metals are often questioned due to the heavy investment they entail, this study assesses the viability of their use in terms of efficiency and cost. Its primary aim is to develop new regenerable sorbents based on an activated carbon support impregnated with Ag in order to compare their cost and behavior in a CO2 enriched gas stream with that of similar materials containing Au. Mercury retention efficiencies of 100 % can be achieved over several adsorption-desorption cycles depending on the type of noble metal used, particle size and impurities in the gas atmosphere. The results suggest that the Hg-Ag amalgamation process differs from the Hg-Au one, in that they show different kinetics of adsorption and temperatures of desorption. The Ag and Au regenerable sorbents developed in this study would be competitive given the environmental and health benefits they offer compared to the single-use activated carbons employed until now at industrial scale.
Collapse
Affiliation(s)
- Cristina Antuña-Nieto
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - Elena Rodríguez
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - Maria Antonia Lopez-Anton
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain.
| | - Roberto García
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - M Rosa Martínez-Tarazona
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| |
Collapse
|
23
|
Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, Rozaini MNH, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers (Basel) 2020; 12:E2648. [PMID: 33182825 PMCID: PMC7698011 DOI: 10.3390/polym12112648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
- Chemistry Department, Al-Qalam University Katsina, Katsina 2137, Nigeria
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Anita Ramli
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Muhammad Nur’ Hafiz Rozaini
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Ahmad Hussaini Jagaba
- Civil Engineering Department, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Osamah Aldaghri
- Physics Department, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abduaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
24
|
Blachnio M, Derylo-Marczewska A, Charmas B, Zienkiewicz-Strzalka M, Bogatyrov V, Galaburda M. Activated Carbon from Agricultural Wastes for Adsorption of Organic Pollutants. Molecules 2020; 25:molecules25215105. [PMID: 33153177 PMCID: PMC7662369 DOI: 10.3390/molecules25215105] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Agricultural waste materials (strawberry seeds and pistachio shells) were used for preparation of activated carbons by two various methods. Chemical activation using acetic acid and physical activation with gaseous agents (carbon dioxide and water vapor) were chosen as mild and environmentally friendly methods. The effect of type of raw material, temperature, and activation agent on the porous structure characteristics of the materials was discussed applying various methods of analysis. The best obtained activated carbons were characterized by high values of specific surface area (555-685 m2/g). The Guinier analysis of small-angle X-ray scattering (SAXS) curves showed that a time of activation affects pore size. The samples activated using carbon dioxide were characterized mostly by the spherical morphology of pores. Adsorbents were utilized for removal of the model organic pollutants from the single- and multicomponent systems. The adsorption capacities for the 4-chloro-2-methyphenoxyacetic acid (MCPA) removal were equal to 1.43-1.56 mmol/g; however, for adsorbent from strawberry seeds it was much lower. Slight effect of crystal violet presence on the MCPA adsorption and inversely was noticed as a result of adsorption in different types of pores. For similar herbicides strong competition in capacity and adsorption rate was observed. For analysis of kinetic data various equations were used.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (B.C.); (M.Z.-S.)
- Correspondence: (M.B.); (A.D.-M.); Tel.: +48-8153-756-37 (M.B.); +48-8153-777-66 (A.D.-M.)
| | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (B.C.); (M.Z.-S.)
- Correspondence: (M.B.); (A.D.-M.); Tel.: +48-8153-756-37 (M.B.); +48-8153-777-66 (A.D.-M.)
| | - Barbara Charmas
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (B.C.); (M.Z.-S.)
| | - Malgorzata Zienkiewicz-Strzalka
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (B.C.); (M.Z.-S.)
| | - Viktor Bogatyrov
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv, Ukraine; (V.B.); (M.G.)
| | - Mariia Galaburda
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv, Ukraine; (V.B.); (M.G.)
| |
Collapse
|
25
|
Angın D, Güneş S. The usage of orange pulp activated carbon in the adsorption of 2,4-dichlorophenoxy acetic acid from aqueous solutions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:436-444. [PMID: 33012178 DOI: 10.1080/15226514.2020.1825325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the numerous agrochemicals in use today, the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D), has been widely applied to control broad-leaved weeds in gardens and farming. 2,4-D is commonly preferred because of its low cost and good selectivity. On the other hand, 2,4-D is a poorly biodegradable pollutant. Therefore, this study has focused on the adsorption of 2,4-D from aqueous solutions by using activated carbon. The activated carbon was produced from the orange (Citrus sinensis L.) pulp by chemical activation with zinc chloride. The morphological and chemical characteristics of the activated carbon were investigated by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2-adsorption techniques. Then, the effect of adsorption parameters was researched for 2,4-D adsorption on activated carbon. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 71.94 mg g-1 at 298 K. The adsorption kinetic of 2,4-D obeys the pseudo-second-order kinetic model. The thermodynamic parameters indicated a feasible, spontaneous and exothermic adsorption. These results show that the prepared activated carbon has good potential for the removal of 2,4-D from aqueous solutions.
Collapse
Affiliation(s)
- Dilek Angın
- Department of Food Engineering, Sakarya University, Sakarya, Turkey
| | - Sinem Güneş
- Department of Food Technology, Harran University, Sanlıurfa, Turkey
| |
Collapse
|
26
|
Gul P, Ahmad KS, Ali D. Activated carbon processed from Citrus sinensis: Synthesis, characterization and application for adsorption-based separation of toxic pesticides from soils. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1810071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Palwasha Gul
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Nejadshafiee V, Islami MR. Bioadsorbent from Magnetic Activated Carbon Hybrid for Removal of Dye and Pesticide. ChemistrySelect 2020. [DOI: 10.1002/slct.202001801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vajihe Nejadshafiee
- Chemistry DepartmentCentral LabShahid Bahonar University Kerman 76169 Iran
- Central LabShahid Bahonar University Kerman 76169 Iran
| | | |
Collapse
|
28
|
Guerrero-Fajardo CA, Giraldo L, Moreno-Piraján JC. Preparation and Characterization of Graphene Oxide for Pb(II) and Zn(II) Ions Adsorption from Aqueous Solution: Experimental, Thermodynamic and Kinetic Study. NANOMATERIALS 2020; 10:nano10061022. [PMID: 32471059 PMCID: PMC7352254 DOI: 10.3390/nano10061022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
A thermodynamic and kinetic study of the adsorption process of Zn (II) and Pb (II) ions from aqueous solution on the surface of graphene oxide (GO) to establish the mechanisms of adsorbate–adsorbent interaction on this surface. The effect of pH on the retention capacity was studied and adsorption isotherms were determined from aqueous solution of the ions; once the experimental data was obtained, the kinetic and thermodynamic study of the sorption process was carried out. The data were fitted to the Langmuir, Freundlich, Dubinin-Raduskevich and Temkin isotherm models. The results showed that Zn(II) and Pb(II) on the GO adsorbing surface fitted the Langmuir model with correlation coefficients (R2) of 0.996. Kinetic models studied showed that a pseudo-second-order model was followed and thermodynamically, the process was spontaneous according to the values of Gibbs free energy (ΔGo). N2 adsorption isotherms were determined and modeled with the NLDFT (nonlocal density functional theory) and QSDFT (quenched solid density functional theory) kernels.
Collapse
Affiliation(s)
- Carlos A. Guerrero-Fajardo
- Departamento de Química-Grupos de Investigación Aprena y Calorimetría, Facultad de Ciencias, Universidad Nacional de Colombia-sede Bogotá, Cra. 45 No. 26–85, Edificio 451, Bogotá 111321, Colombia; (C.A.G.-F.); (L.G.)
| | - Liliana Giraldo
- Departamento de Química-Grupos de Investigación Aprena y Calorimetría, Facultad de Ciencias, Universidad Nacional de Colombia-sede Bogotá, Cra. 45 No. 26–85, Edificio 451, Bogotá 111321, Colombia; (C.A.G.-F.); (L.G.)
| | - Juan Carlos Moreno-Piraján
- Facultad de Ciencias, Departmento de Química, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: ; Tel.: +57-1-339-4949
| |
Collapse
|
29
|
Faasen DP, Jarray A, Zandvliet HJW, Kooij ES, Kwiecinski W. Hansen solubility parameters obtained via molecular dynamics simulations as a route to predict siloxane surfactant adsorption. J Colloid Interface Sci 2020; 575:326-336. [PMID: 32387741 DOI: 10.1016/j.jcis.2020.04.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The Hansen Solubility Parameters (HSP) derived from Molecular Dynamics (MD) simulations can be used as a fast approach to predict surfactants adsorption on a solid surface. Experiments and simulations: We focused on the specific case of siloxane-based surfactants adsorption on silicon oxide surface (SiO2), encountered in inkjet printing processes. A simplified atomistic model of the SiO2 surface was designed to enable the computation of its solubility parameter using MD, and to subsequently determine the interactions of the SiO2 surface with the siloxane-based surfactant and the various solvents employed. Surfactant adsorption was characterized experimentally using contact angle goniometry, ellipsometry, XPS and AFM. FINDINGS Comparison of the numerical results with experiments showed that the HSP theory allows to identify the range of solvents that are likely to prevent surfactant adsorption on the SiO2 surface. The proposed approach indicates that polar solvents, such as acetone and triacetin, which are strongly attracted to the silicon oxide surface might form a shield that prevents siloxane-based surfactants adsorption. This simple approach, can guide the selection of adequate solvents for surfaces and surfactants with specific chemical structures, providing opportunities for controlling interfacial adsorption.
Collapse
Affiliation(s)
- Daniël P Faasen
- Physics of Interfaces and Nanomaterials Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Ahmed Jarray
- Multi Scale Mechanics (MSM), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Harold J W Zandvliet
- Physics of Interfaces and Nanomaterials Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - E Stefan Kooij
- Physics of Interfaces and Nanomaterials Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Wojciech Kwiecinski
- Physics of Interfaces and Nanomaterials Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
30
|
Antuña-Nieto C, Rodríguez E, López-Antón MA, García R, Martínez-Tarazona MR. Mercury adsorption in the gas phase by regenerable Au-loaded activated carbon foams: a kinetic and reaction mechanism study. NEW J CHEM 2020. [DOI: 10.1039/d0nj00898b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
External diffusion is the rate-controlling step in the adsorption of gas phase Hg0with Au-loaded activated carbon foams (pseudo-first order kinetic model).
Collapse
Affiliation(s)
| | - Elena Rodríguez
- Instituto de Ciencia y Tecnología del Carbono
- INCAR-CSIC
- 33011 Oviedo
- Spain
| | | | - Roberto García
- Instituto de Ciencia y Tecnología del Carbono
- INCAR-CSIC
- 33011 Oviedo
- Spain
| | | |
Collapse
|
31
|
Liu D, Huang Z, Men S, Huang Z, Wang C. Nitrogen and phosphorus adsorption in aqueous solutions by humic acids from weathered coal: isotherm, kinetics and thermodynamic analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2175-2184. [PMID: 31318355 DOI: 10.2166/wst.2019.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to reveal the mechanism of nitrogen and phosphorus adsorption by humic acids (HAs). HAs were extracted from weathered coal and used as adsorbents of urea-N and phosphate-P in water. The effect of different factors was considered, such as the initial concentration of urea-N and phosphate-P, temperature, and pH. The surface characteristics of the HAs were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectrometry. The results of batch adsorption experiments showed high effectiveness for nitrogen adsorption, the kinetics fitted with the pseudo-second-order model, and the isotherm followed the Langmuir model. For phosphorus adsorption, the data fitted well with the Weber and Morris model and the adsorption isotherms followed both the Langmuir and Freundlich isotherm models. The experimental results indicated that the adsorption behavior of HAs was both an endothermic and spontaneous process. These findings can be used as a reference for the mitigation of non-point source pollution and the application of fertilizer in agriculture.
Collapse
Affiliation(s)
- Dan Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China E-mail:
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China E-mail:
| | - Shuhui Men
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China E-mail:
| | - Zhen Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China E-mail: ; Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China E-mail:
| |
Collapse
|