1
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
2
|
Guo H, Wang M, Ye Y, Huang C, Wang S, Peng H, Wang X, Fan M, Hou T, Wu X, Huang X, Yan Y, Zheng K, Wu T, Li L. Short-Term Exposure to Nitrogen Dioxide Modifies Genetic Predisposition in Blood Lipid and Fasting Plasma Glucose: A Pedigree-Based Study. BIOLOGY 2023; 12:1470. [PMID: 38132296 PMCID: PMC10740487 DOI: 10.3390/biology12121470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
(1) Background: Previous studies suggest that exposure to nitrogen dioxide (NO2) has a negative impact on health. But few studies have explored the association between NO2 and blood lipids or fasting plasma glucose (FPG), as well as gene-air pollution interactions. This study aims to fill this knowledge gap based on a pedigree cohort in southern China. (2) Methods: Employing a pedigree-based design, 1563 individuals from 452 families participated in this study. Serum levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and FPG were measured. We investigated the associations between short-term NO2 exposure and lipid profiles or FPG using linear mixed regression models. The genotype-environment interaction (GenoXE) for each trait was estimated using variance component models. (3) Results: NO2 was inversely associated with HDLC but directly associated with TG and FPG. The results showed that each 1 μg/m3 increase in NO2 on day lag0 corresponded to a 1.926% (95%CI: 1.428-2.421%) decrease in HDLC and a 1.400% (95%CI: 0.341-2.470%) increase in FPG. Moreover, we observed a significant genotype-NO2 interaction with HDLC and FPG. (4) Conclusion: This study highlighted the association between NO2 exposure and blood lipid profiles or FPG. Additionally, our investigation suggested the presence of genotype-NO2 interactions in HDLC and FPG, indicating potential loci-specific interaction effects. These findings have the potential to inform and enhance the interpretation of studies that are focused on specific gene-environment interactions.
Collapse
Affiliation(s)
- Huangda Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
| | - Mengying Wang
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Ying Ye
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Chunlan Huang
- Department of Hygiene, Nanjing Country Center for Disease Control and Prevention, Nanjing 363600, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
| | - Xueheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
| | - Meng Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
| | - Tianjiao Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
| | - Xiaoling Wu
- Department of Hygiene, Nanjing Country Center for Disease Control and Prevention, Nanjing 363600, China
| | - Xiaoming Huang
- Department of Hygiene, Nanjing Country Center for Disease Control and Prevention, Nanjing 363600, China
| | - Yansheng Yan
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Kuicheng Zheng
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
- Key Laboratory of Reproductive Health, Ministry of Health, Beijing 100191, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (H.G.)
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Kim HJ, Son HY, Park P, Yun JM, Kwon H, Cho B, Kim JI, Park JH. A genome-wide by PM 10 exposure interaction study for blood pressure in Korean adults. Sci Rep 2023; 13:13060. [PMID: 37567956 PMCID: PMC10421905 DOI: 10.1038/s41598-023-40155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Blood pressure (BP) is a typical complex trait, and the genetic susceptibility of individuals to changes in BP induced by air pollution exposure is different. Although interactions of exposure to air pollutants with several candidate genes have been identified, genome-wide interaction studies (GWISs) are needed to understand the association between them with BP. Therefore, we aimed to discover the unique genetic loci for BP that interact with exposure to air pollutants in Korean adults. We ultimately included 1868 participants in the discovery step and classified them into groups of those with low-to-moderate exposure and high exposure to average annual concentration of particulate matter with an aerodynamic diameter ≤ 10 μm (PM10). Because none of the single nucleotide polymorphisms (SNPs) achieved a genome-wide level of significance of pint < 5 × 10-8 for either systolic BP (SBP) or diastolic BP (DBP), we considered the top 10 ranking SNPs for each BP trait. To validate these suggestive SNPs, we finally selected six genetic variants for SBP and five variants for DBP, respectively. In a replication result for SBP, only one SNP (rs12914147) located in an intergenic region of the NR2F2 showed a significant interaction. We also identified several genetic susceptibility loci (e.g., CHST11, TEK, and ITGA1) implicated in candidate mechanisms such as inflammation and oxidative stress in the discovery step, although their interaction effects were not replicated. Our study reports the first GWIS finding to our knowledge, and the association between exposure to PM10 and BP levels may be determined in part by several newly discovered genetic suggestive loci, including NR2F2.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Philiip Park
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Family Medicine, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea.
- Department of Family Medicine, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea.
| |
Collapse
|
4
|
Liu Y, Li Y, Xu H, Zhao X, Zhu Y, Zhao B, Yao Q, Duan H, Guo C, Li Y. Pre- and postnatal particulate matter exposure and blood pressure in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 223:115373. [PMID: 36731599 DOI: 10.1016/j.envres.2023.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early life is a susceptible period of air pollution-related adverse health effects. Hypertension in children might be life-threatening without prevention or treatment. Nevertheless, the causative association between environmental factors and childhood hypertension was limited. In the light of particulate matter (PM) as an environmental risk factor for cardiovascular diseases, this study investigated the association of pre- and postnatal PM exposure with blood pressure (BP) and hypertension among children and adolescents. METHOD Four electronic databases were searched for related epidemiological studies published up to September 13, 2022. Stata 14.0 was applied to examine the heterogeneity among the studies and evaluate the combined effect sizes per 10 μg/m3 increase of PM by selecting the corresponding models. Besides, subgroup analysis, sensitivity analysis, and publication bias test were also conducted. RESULTS Prenatal PM2.5 exposure was correlated with increased diastolic blood pressure (DBP) in offspring [1.14 mmHg (95% CI: 0.12, 2.17)]. For short-term postnatal exposure effects, PM2.5 (7-day average) was significantly associated with systolic blood pressure (SBP) [0.20 mmHg (95% CI: 0.16, 0.23)] and DBP [0.49 mmHg (95% CI: 0.45, 0.53)]; and also, PM10 (7-day average) was significantly associated with SBP [0.14 mmHg (95% CI: 0.12, 0.16)]. For long-term postnatal exposure effects, positive associations were manifested in SBP with PM2.5 [β = 0.44, 95% CI: 0.40, 0.48] and PM10 [β = 0.35, 95% CI: 0.19, 0.51]; DBP with PM1 [β = 0.45, 95% CI: 0.42, 0.49], PM2.5 [β = 0.31, 95% CI: 0.27, 0.35] and PM10 [β = 0.32, 95% CI: 0.19, 0.45]; and hypertension with PM1 [OR = 1.43, 95% CI: 1.40, 1.46], PM2.5 [OR = 1.65, 95% CI: 1.29, 2.11] and PM10 [OR = 1.26, 95% CI: 1.09, 1.45]. CONCLUSION Both prenatal and postnatal exposure to PM can increase BP, contributing to a higher prevalence of hypertension in children and adolescents.
Collapse
Affiliation(s)
- Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Wang S, Wang M, Peng H, Tian Y, Guo H, Wang J, Yu H, Xue E, Chen X, Wang X, Fan M, Zhang Y, Wang X, Qin X, Wu Y, Li J, Ye Y, Chen D, Hu Y, Wu T. Synergism of cell adhesion regulatory genes and instant air pollutants on blood pressure elevation. CHEMOSPHERE 2023; 312:136992. [PMID: 36334751 DOI: 10.1016/j.chemosphere.2022.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Accumulating evidence suggests that an instant exposure to particulate matter (PM) may elevate blood pressure (BP), where cell-adhesion regulatory genes may be involved in the interplay. However, few studies to date critically examined their interaction, and it remained unclear whether these genes modified the association. To assess the association between instant PM exposure and BP, and to examine whether single-nucleotide polymorphisms (SNPs) mapped in four cell adhesion regulatory genes modify the relationship, a cross-sectional study was performed, based on the baseline of an ongoing family-based cohort in Beijing, China. A total of 4418 persons from 2089 families in Northern China were included in the analysis. Four tagged SNPs in cell adhesion regulatory genes were selected among ZFHX3, CXCL12, RASGRP1 and MIR146A. A generalized additive model (GAM) with a Gaussian link was adopted to estimate the change in blood pressure after instant PM2.5 or PM10 exposure. A cross-product term of PM2.5/PM10 and genotype was incorporated into the GAM model to test for interaction. The study observed that an instant exposure to either PM2.5 or PM10 was found to be associated with elevated systolic blood pressure (SBP). On average, a 10 μg/m3 increase in instant exposure to PM2.5 and PM10 concentration corresponded to 0.140% (95% CI: 0.014%-0.265%, P = 0.029) and 0.173% (95% CI: 0.080%-0.266%, P < 0.001) higher SBP. However, diastolic blood pressure (DBP) was not elevated as the PM2.5 or PM10 concentration increased (P > 0.05). A synergetic interaction on SBP was observed between SNPs in four cell adhesion regulatory genes (rs2910164 in MIR146A, rs2297630 in CXCL12, rs7403531 in RASGRP1, and rs7193343 in ZFHX3) and instant PM2.5 exposure (Pfor interaction <0.05). Briefly, as carriers of risk alleles in each of these four genes increased, an enhanced association was found between instant PM2.5 exposure and SBP.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Mengying Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Hexiang Peng
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Huazhong University of Science and Technology, 430030, China
| | - Huangda Guo
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiating Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Huan Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Enci Xue
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xi Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xueheng Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Meng Fan
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaochen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xueying Qin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yiqun Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jin Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Ying Ye
- Department of Local Diseases Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350001, China
| | - Dafang Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yonghua Hu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Tao Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's China.
| |
Collapse
|
6
|
Kwak JH, Kim HJ. The Association between Air Pollutants Exposure with Pre- and Hypertension by Vitamin C Intakes in Korean Adults: A Cross-Sectional Study from the 2013-2016 Korea National Health and Nutrition Examination. J Nutr Health Aging 2023; 27:21-29. [PMID: 36651483 DOI: 10.1007/s12603-022-1872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Oxidative stress and systemic inflammation are the main pathways by which air pollutants cause hypertension (HTN). Vitamin C intake may reduce the risk of HTN caused by air pollutants. This study aimed to investigate the association between air pollutants and pre-HTN and HTN in Korean adults and whether these associations were modified by vitamin C intake, using data from the 2013-2016 Korean National Health and Nutrition Examination Survey (KNHANES). DESIGN Cross-sectional study. SETTING This study used data from the KNHANES VI (2013-2015) and VII (2016) along with the data from the annual air pollution report of the Ministry of Environment. PARTICIPANTS We included 11,866 adults who had responded to a semi-food frequency questionnaire. MEASUREMENTS We used survey logistic regression models to evaluate the association of ambient PM10, SO2, NO2, CO, and O3 with pre-HTN and HTN according to vitamin C intake. RESULTS After adjusting for potential covariates, exposure to ambient PM10, SO2, NO2, and CO was significantly associated with a high prevalence of pre-HTN and HTN, whereas exposure to O3 was significantly associated with a low prevalence of pre-HTN and HTN. In particular, as the air pollutant scores increased (severe air pollution), the prevalence of pre-HTN and HTN increased in a dose-dependent manner (highest score vs. lowest score, OR=1.85, 95% CI=1.39-2.46, p for trend <.0001). However, these associations were found to be pronounced in adults with low vitamin C intake (highest score vs. lowest score, OR=2.30, 95% CI=1.50-3.54, p for trend <.0001), whereas the statistical significance disappeared for adults with high vitamin C intake (highest score vs. lowest score, OR=1.40, 95% CI=0.93-2.12, p for trend=0.007). CONCLUSION Exposure to air pollutants such as PM10, SO2, NO2, and CO may increase the prevalence of pre-HTN and HTN among Korean adults. In addition, a high intake of vitamin C may help prevent pre-HTN and HTN caused by air pollutants.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Hyun Ja Kim, Department of Food and Nutrition, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do 25457, Republic of Korea. Tel.: +82-33-640-2967, Fax: +82-33-640-2330, E-mail:
| | | |
Collapse
|
7
|
Li J, Liang F, Liu F, Li J, Huang K, Yang X, Chen S, Cao J, Shen C, Zhao L, Li Y, Hu D, Wang W, Wu J, Huang J, Lu X, Gu D. Genetic risk modifies the effect of long-term fine particulate matter exposure on coronary artery disease. ENVIRONMENT INTERNATIONAL 2022; 170:107624. [PMID: 36402033 DOI: 10.1016/j.envint.2022.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although both environmental and genetic factors were linked to coronary artery disease (CAD), the extent to which the association of air pollution exposure with CAD can be influenced by genetic risk was not well understood. METHODS A total of 41,149 participants recruited from the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) were included. Genetic risk scores of CAD were constructed based on 540 genetic variants. Long-term PM2.5 exposures were assessed by adopting satellite-based PM2.5 estimations at 1-km resolution. We used stratified Cox proportional hazards regression model to examine the impact of PM2.5 exposure and genetic risk on CAD risk, and further analyzed modification effect of genetic predisposition on association between PM2.5 exposure and CAD risk. RESULTS During a median of 13.01 years of follow-up, 1,373 incident CAD events were observed. Long-term PM2.5 exposure significantly increased CAD risk, and the hazard ratios (HRs) [95% confidence intervals (CIs)] were 1.27 (1.05-1.54) and 1.95 (1.57-2.42) among intermediate and high PM2.5 exposure groups compared to low PM2.5 exposure group. The relative risks of CAD were 40% (HR: 1.40, 95%CI: 1.18-1.66) and 133% (HR: 2.33, 95%CI: 1.94-2.79) higher among individuals at intermediate and high genetic risk than those at low genetic risk. Compared with individuals with both low genetic risk and low PM2.5 exposure, those with high genetic risk and high PM2.5 exposure had highest CAD risk, with HR of 4.37 (95%CI: 3.13-6.11). We observed significant multiplicative (P < 0.001) and additive interaction [relative excess risk due to interaction (95%CI): 2.75 (1.32-4.20); attributable proportion due to interaction (95%CI): 0.56 (0.42-0.70)] between genetic risk and PM2.5 exposure on CAD. CONCLUSION This study provided evidence that long-term PM2.5 exposure might increase CAD risk, especially among people at high genetic risk. Our findings highlighted the importance of taking strategies on air quality improvement to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300203, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liancheng Zhao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Ying Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Wending Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbin Wu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Liu Y, Dong J, Zhai G. Association between air pollution and hospital admissions for hypertension in Lanzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11976-11989. [PMID: 34558050 DOI: 10.1007/s11356-021-16577-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Air pollution has been accepted as an important risk factor for hypertension. However, little is known about the association between air pollution and hospitalization for hypertension. In this study, we explored the association between six criteria air pollutants and hypertension hospitalization in Lanzhou, China. An over-dispersed Poisson regression model combined with a distributed lag nonlinear model (DLNM) was used. In addition, we investigated the effect of modification by sex, age, and season. A total of 30,197 hospitalization cases were identified during the study period. A 10μg/m3 increase in PM2.5, PM10, SO2, and NO2 concentrations or 1 mg/m3 increment in CO was significantly associated with relative risks (RRs) of hospital admissions due to hypertension 1.026 [95% confidence interval (CI): 1.010, 1.043], 1.010 (95%CI: 1.005, 1.015), 1.042 (95%CI: 1.001, 1.085), 1.028 (95%CI: 1.003, 1.052), and 1.106 (95%CI: 1.031, 1.186), respectively. No significant influence of O38h was found on hypertension hospital admissions. The associations differed by individual characteristics; the elderly (≥ 65 years) and females were highly vulnerable. The effects of PM2.5, SO2, and CO were more evident in the cool season than in the warm season. From exposure-response curves, we observe a nearly linear relationship for PM2.5, PM10, SO2, NO2, and CO. This study suggests that exposure to PM2.5, PM10, SO2, NO2, and CO is associated with hypertension morbidity.
Collapse
Affiliation(s)
- Yurong Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Guangyu Zhai
- School of Economics and Management, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| |
Collapse
|
9
|
Bouhila Z, Azli T, Boukhadra D, Hadri A, Bayou N, Mazouzi C, Benbouzid S, Lounici H. Assessment of elemental composition in Algiers-Algeria, using instrumental neutron activation analysis on different environmental samples of lichens and tree barks. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07891-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Azli T, Bouhila Z, Mansouri A, Messaoudi M, Zergoug Z, Boukhadra D, Begaa S. Application of instumetal neutron activation analysis method for determination of some trace elements in lichens around three sites in Algiers. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Trace elements (TEs) constitute a major part of pollution, which can induce a detrimental impact on public health. A precise analysis of these elements in the environment is an important parameter in the evaluation of the population's quality of life. This work aims to quantify the concentration of some trace elments in enviromental samples using Istrumental Neutron Activation Analysis technique (INAA); also a comparative study between three sampling points (Draria, Baraki and Reghaia) were done. The Samples and standards were irradiated for 6 h at “NUR” research reactor with a thermal neutron flux of 1013 n cm−2 s−1, and analyzed by gamma ray spectrometry using HPGe detector. Seventeen elements were assessed: Ba, Br, Ce, Co, Cr, Hf, Fe, La, Nd, Rb, Sb, Sc, Se, Sm, Sr, Yb and Zn in this study. The accuracy of the method was evaluated by analyzing Certified Reference Materials (CRMs) and Standard Reference Materials (SRMs). The data obtained in this work may contribute to obtaining information about a possible rank of pollution and the different capabilities of elemental bioaccumulation by lichens.
Collapse
Affiliation(s)
- Tarek Azli
- Nuclear Research Centre of Draria CRND, COMENA , Algiers , Algeria
| | - Zohra Bouhila
- Nuclear Research Centre of Draria CRND, COMENA , Algiers , Algeria
| | - Ammar Mansouri
- Nuclear Research Centre of Algiers , 02 Frantz Fanon Street , P.O. Box 399 , Algiers , Algeria
| | - Mohammed Messaoudi
- Reactor Chemistry Department , Nuclear Research Centre of Birine , P.O. Box 180 , Ain Oussera , 17200 , Djelfa , Algeria
| | - Zineb Zergoug
- Nuclear Research Centre of Draria CRND, COMENA , Algiers , Algeria
| | - Dallel Boukhadra
- Nuclear Research Centre of Draria CRND, COMENA , Algiers , Algeria
| | - Samir Begaa
- Reactor Chemistry Department , Nuclear Research Centre of Birine , P.O. Box 180 , Ain Oussera , 17200 , Djelfa , Algeria
| |
Collapse
|
11
|
Skipina TM, Soliman EZ, Upadhya B. Association between secondhand smoke exposure and hypertension: nearly as large as smoking. J Hypertens 2020; 38:1899-1908. [PMID: 32890262 DOI: 10.1097/hjh.0000000000002478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Active smoking is a widely accepted risk factor for cardiovascular disease and is recognized as a major public health problem. Passive smoking, also known as secondhand smoke exposure (SHSE), is thought to have similar cardiovascular consequences and the risk has been postulated to be equivalent to that of active smoking. A major component of this risk involves the connection with chronic hypertension. There are several population-based observational studies investigating the relationship between SHSE and chronic hypertension, all of which demonstrate a positive association. Given that SHSE appears to be a risk factor for chronic hypertension, SHSE should also be a risk factor for hypertensive end-organ disease. Many studies have sought to investigate this relationship, but this has yet to be fully elucidated. In this review, we focus on the current evidence regarding the association between SHSE and hypertension as well as exploration of the links between SHSE and hypertensive end-organ damage.
Collapse
Affiliation(s)
- Travis M Skipina
- Cardiovascular Medicine Section, Department of Internal Medicine
| | - Elsayed Z Soliman
- Cardiovascular Medicine Section, Department of Internal Medicine
- Department of Epidemiology and Prevention, Epidemiological Cardiology Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Bharathi Upadhya
- Cardiovascular Medicine Section, Department of Internal Medicine
| |
Collapse
|
12
|
Liu W, Cai J, Fu Q, Zou Z, Sun C, Zhang J, Huang C. Associations of ambient air pollutants with airway and allergic symptoms in 13,335 preschoolers in Shanghai, China. CHEMOSPHERE 2020; 252:126600. [PMID: 32234631 DOI: 10.1016/j.chemosphere.2020.126600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Findings are inconsistent in studies for impacts of outdoor air pollutants on airway health in childhood. In this paper, we collected data regarding airway and allergic symptoms in the past year before a survey in 13,335 preschoolers from a cross-sectional study. Daily averaged concentrations of ambient sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤10 μm (PM10) in the past year before the survey were collected in the kindergarten-located district. We investigated associations of 12-month average concentrations of these pollutants with childhood airway and allergic symptoms. In the two-level (district-child) logistic regression analyses, exposure to higher level of NO2 and of PM10 increased odds of wheeze symptoms (adjusted OR, 95%CI: 1.03, 1.01-1.05 for per 3.0 μg/m3 increase in NO2; 1.22, 1.09-1.39 for per 7.6 μg/m3 increase in PM10), wheeze with a cold (1.03, 1.01-1.06; 1.22, 1.08-1.39), dry cough during night (1.05, 1.03-1.08; 1.23, 1.09-1.40), rhinitis symptoms (1.11, 1.08-1.13; 1.32, 1.07-1.63), rhinitis on pet (1.11, 1.05-1.18; 1.37, 0.95-1.98) and pollen (1.12, 1.03-1.21; 1.23, 0.84-1.82) exposure, eczema symptoms (1.09, 1.05-1.12; 1.22, 0.98-1.52), and lack of sleep due to eczema (1.12, 1.07-1.18; 1.58, 1.25-1.98). Exposures to NO2 and PM10 were also significantly and positively associated with the accumulative score of airway symptoms. Similar positive associations were found of NO2 and of PM10 with the individual symptoms and symptom scores among preschoolers from different kindergarten-located district. These results indicate that ambient NO2 and PM10 likely are risk factors for airway and allergic symptoms in childhood in Shanghai, China.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China; School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, China
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Zhijun Zou
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chanjuan Sun
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialing Zhang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
13
|
Wu Y, Tian Y, Wang M, Wang X, Wu J, Wang Z, Hu Y. Short-term exposure to air pollution and its interaction effects with two ABO SNPs on blood lipid levels in northern China: A family-based study. CHEMOSPHERE 2020; 249:126120. [PMID: 32062209 DOI: 10.1016/j.chemosphere.2020.126120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
We examined the main effects of ambient particulate matters, as well as whether single-nucleotide polymorphisms (SNPs), located within ABO gene would modify the relationship. Data were collected from a family-based study conducted in Northern China. A generalized additive model with a Gaussian link and with each family as a stratum was applied to estimate the percentage change in blood lipid levels following a 10 μg/m3 increase in ambient particulate matter concentrations. Interaction analyses were conducted by including a cross-product term of PM2.5 or PM10 by SNP. Results showed that a 10 μg/m3 increase in Particulate matter with aerodynamic diameter <2.5 μm (PM2.5) concentrations corresponded to the highest 0.010% (95% CI: 0.002%-0.018%), 0.018% (95% CI: 0.006%-0.029%), 0.019% (95% CI: 0.010%-0.029%) increase in total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), respectively and 0.005% (95% CI: 0.002%-0.008%) decrease in high density lipoprotein cholesterol (HDL-C)-to-LDL-C ratio. As for the PM10, similar results were observed. Furthermore, our finding showed an interaction effect of PM10 and rs505922/rs579459 C allele on TG. Specifically, individuals carrying the rs505922 and rs579459 T allele have higher TG concentrations following PM10 exposure, with a 10 μg/m3 increase in PM10 concentrations corresponding to the highest 0.028% and 0.034% increase in TG, respectively. In conclusion, short-term exposures to ambient particulate matters are associated with a higher blood lipid level, which can be modified by ABO polymorphism. The findings may be useful in identifying vulnerable population according to genetic background.
Collapse
Affiliation(s)
- Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaohua Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zijing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
14
|
Yang HB, Teng CG, Hu J, Zhu XY, Wang Y, Wu JZ, Xiao Q, Yang W, Shen H, Liu F. Short-term effects of ambient particulate matter on blood pressure among children and adolescents:A cross-sectional study in a city of Yangtze River delta, China. CHEMOSPHERE 2019; 237:124510. [PMID: 31549641 DOI: 10.1016/j.chemosphere.2019.124510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Several studies have demonstrated associations between short-term exposure to particulate matter (PM) and blood pressure (BP) among various adults groups, but evidence in children and adolescents is still rare. In 2016, a cross-sectional survey was conducted among 194 104 participants aged 6-17 years in Suzhou, China. Daily concentrations of particulate matters with an aerodynamic diameter of ≤10 μg/m3 (PM10) and aerodynamic diameter ≤2.5 μg/m3 (PM2.5) on 0-6 days preceding BP examination were collected from nearby air monitoring stations. Using generalized linear mixed-effects models, short-term effects of PM on personal BP were estimated. A 10 μg/m3 increment in the 0-6 day mean of PM2.5 was significantly associated with elevation of 0.20 mmHg [95% confidence interval (95% CI) 0.16-0.23] in systolic BP (SBP), 0.49 mmHg (95% CI 0.45-0.53) in diastolic BP (DBP), respectively. Similarly, 0.14 mmHg (95% CI 0.12-0.16) higher SBP and 0.32 mmHg (95% CI 0.30-0.34) higher DBP were found for each 10 μg/m3 increase in 0-6 day mean of PM10. More apparent associations were observed in females than in males. Odds ratio (95%CI) of for PM2.5 exposure at 0-6 d mean was 1.06 (1.03-1.08) in females, while it was 1.01 (0.99-1.03) in males. Participants with young ages, underweight and obesity were also associated with increased susceptibility to PM-induced BP effects. Short-term exposure in PM was significantly associated with elevated BP in children, indicating a need to control PM levels and protect children from PM exposure in China.
Collapse
Affiliation(s)
- Hai-Bing Yang
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China
| | - Chen-Gang Teng
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China
| | - Jia Hu
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China.
| | - Xiao-Yan Zhu
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China; Institute of Suzhou Biobank, Suzhou, Jiangsu, 215004, China
| | - Ying Wang
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China; Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing-Zhi Wu
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China
| | - Qi Xiao
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China
| | - Wei Yang
- School of Community Health Sciences, University of Nevada, Reno, NV, 89154, USA
| | - Hui Shen
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China
| | - Fang Liu
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
15
|
Energy and Health Efficiencies in China with the Inclusion of Technological Innovation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214225. [PMID: 31683540 PMCID: PMC6862312 DOI: 10.3390/ijerph16214225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
The price people pay for low energy efficiency includes not only high manufacturing costs, but also public health. With technological innovation as the driving factor for improving energy efficiency, this study uses two-stage dynamic undesirable data envelopment analysis (TDU-DEA) under variable return to scale to evaluate energy and health efficiencies with inclusion of technological innovation in 30 provinces of China over the period 2013–2016. The results show that the mean overall efficiencies and ranks in the eastern region are significantly higher than those in the non-eastern region, with or without the inclusion of technological innovations, and that energy efficiency in most provinces is higher than health efficiency. The average technological innovation efficiencies for energy conservation are higher than those for respiratory medical treatment. The former gap between the eastern region and non-east region is also smaller than the latter. Lastly, regions with the best technological innovation efficiencies are Beijing, Shanghai, Guangdong, Fujian, Hainan, Hebei, Inner Mongolia, Ningxia, Qinghai, Shandong, Shanxi, Tianjin, Xinjiang, and Yunnan.
Collapse
|