1
|
Yu J, Li W, Li Q, Li P, Rogachev AV, Jiang X, Yang J. Highly Efficient Continuous Flow Nanocatalyst Platform Constructed with Regenerable Bacterial Cellulose Loaded with Gold Nanoparticles and a Nanoporous Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19548-19559. [PMID: 39239966 DOI: 10.1021/acs.langmuir.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
With the development of society and the growing concern about environmental issues, continuous flow catalytic reactors have gained significant interest due to their resource-efficient advantages over traditional batch devices. In this study, we employed a facile one-step in situ reduction approach to construct highly dispersed gold nanoparticles loaded on regenerable bacterial cellulose nanofiber (BCN) heterogeneous catalysts. These catalysts, in combination with a nanoceramic membrane with a pore size of 1 nm, formed a fully mixed system that was favorable for the efficient continuous flow catalysis of selective reduction reactions of nitrophenol. The reaction system demonstrated remarkable catalytic activity toward nitrophenol reduction reactions at low reductant dosages (<5 equiv), achieving over 95% conversion and 99% selectivity for the aniline product in 10 min under room temperature conditions. Furthermore, continuous flow operations maintained stable catalytic activity with minimal catalyst loss after a 120-h test and were 3 times more time-efficient than batch operations. Additionally, continuous monitoring could be conducted through ultraviolet (UV) spectroscopy. A highly efficient and environmentally friendly strategy was present for designing continuous flow reactions in future applications.
Collapse
Affiliation(s)
- Junjie Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Wenping Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Qingxue Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Pingyun Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - A V Rogachev
- International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing, Jiangsu 210094, China
- Francisk Skorina Gomel State University, 104, Sovetskaya Street, Gomel, Homyel 246019, Belarus
| | - Xiaohong Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| | - Jiazhi Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu 210094, China
| |
Collapse
|
2
|
Jahanbakhshi A, Farahi M. A novel magnetic FSM-16 supported ionic liquid/Pd complex as a high performance and recyclable catalyst for the synthesis of pyrano[3,2- c]chromenes. RSC Adv 2024; 14:16401-16410. [PMID: 38779385 PMCID: PMC11110022 DOI: 10.1039/d4ra01381f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, Fe3O4@FSM-16/IL-Pd was successfully designed and synthesized via a new procedure of palladium(ii) complex immobilization onto magnetic FSM-16 using an ionic liquid, as a novel heterogeneous nanocatalyst. Multiple techniques were employed to characterize this magnetic nanocatalyst such as Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Vibrating Sample Magnetometry (VSM). After complete characterization of the catalyst, its catalytic activity was used for the synthesis of pyrano[3,2-c]chromene-3-carbonitriles via the reaction of 4-hydroxycoumarin, aldehyde, and malononitrile under solvent-free conditions. Also, it can be recovered and reused several times without a significant decrease in its catalytic activity or palladium leaching.
Collapse
Affiliation(s)
- Azar Jahanbakhshi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| |
Collapse
|
3
|
Mahto B, Barhoi A, Ali H, Hussain S. Deciphering the mechanistic insights of 4-nitrophenol reduction catalyzed by a 1D-2D Bi 2S 3 nanostructured catalyst. NANOSCALE 2024; 16:8060-8073. [PMID: 38563265 DOI: 10.1039/d4nr00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Exploring the reaction mechanism and the role of a catalyst in the conversion of pollutants to value-added products is vital for sustainable development. Herein, a polyvinylpyrrolidone-assisted liquid-phase reflux strategy was utilized to synthesize anisotropic 1D-2D Bi2S3 nanostructures. The as-synthesized nanostructures were used as catalysts in batch experiments for 4-nitrophenol (4-NP) reduction and they exhibited an apparent rate constant (kapp), turnover frequency (TOF), and activation energy (Ea) of 0.441 min-1, 1.543 h-1 and 26.13 kJ mol-1, respectively. Also, the effects of catalyst dosage, NaBH4 amount, 4-NP concentration, solvents, pH, and common ions were evaluated. Isotope labeling and kinetic isotope effects (KIEs) confirm that water is the proton source in 4-NP reduction. Electrochemical studies revealed that the nanostructured 1D-2D Bi2S3 enables the dissociation of BH4- into active absorbed and adsorbed hydrogen () species and assists in the catalytic reduction of 4-NP. This study offers a new insight into designing an efficient nanostructured 1D-2D Bi2S3 catalyst for 4-nitrophenol reduction.
Collapse
Affiliation(s)
- Bhagirath Mahto
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801103, India.
| | - Ashok Barhoi
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801103, India.
| | - Haider Ali
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801103, India.
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801103, India.
| |
Collapse
|
4
|
Sánchez-López P, Hernández-Hernández KA, Fuentes Moyado S, Cadena Nava RD, Smolentseva E. Antimicrobial and Virus Adsorption Properties of Y-Zeolite Exchanged with Silver and Zinc Cations. ACS OMEGA 2024; 9:7554-7563. [PMID: 38405448 PMCID: PMC10882595 DOI: 10.1021/acsomega.3c06462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 02/27/2024]
Abstract
The antimicrobial activity of silver and zinc exchanged cations in Y-zeolite (Ag/CBV-600, Zn/CBV-600) is evaluated against Staphylococcus aureus (gram (+)) and Escherichia coli (gram (-)) bacteria along with their adsorption capacity for viruses: brome mosaic virus (BMV), cowpea chlorotic mottle virus (CCMV), and the bacteriophage MS2. The physicochemical properties of synthesized nanomaterials are characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES), UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). According to the obtained results, the main species associated with the exchanged ions are Ag+ and Zn2+ cations with the concentration of around 1 atomic %. The incorporation of cations does not modify the Y-zeolite framework. The Ag/CBV-600 and Zn/CBV-600 materials show an inactivation of 90% for both gram (+) and gram (-) bacteria at 16 h at a relatively low concentration of nanomaterial (0.5 mg/mL). Moreover, the samples present good adsorption capacity for BMV, CCMV, and MS2 viruses showing adsorption higher than 40% after 2 h of interaction with the viruses. These prominent results allow the further usage of nanomaterials as an effective remedy to inhibit and reduce the spread of viruses such as SARS-CoV-2 or other gram (+) or gram (-) bacteria.
Collapse
Affiliation(s)
- Perla Sánchez-López
- Universidad
Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860 Ensenada, Baja California, México
| | - Kevin A. Hernández-Hernández
- Universidad
Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860 Ensenada, Baja California, México
- Centro
de Investigación Científica y de Educación Superior
de Ensenada (CICESE), C.P.
22860 Ensenada, Baja California, México
| | - Sergio Fuentes Moyado
- Universidad
Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860 Ensenada, Baja California, México
| | - Rubén D. Cadena Nava
- Universidad
Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860 Ensenada, Baja California, México
| | - Elena Smolentseva
- Universidad
Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860 Ensenada, Baja California, México
| |
Collapse
|
5
|
Tan L, Sun X, Zhang J, Jin C, Wang F, Liu D. Aurivillius-layered Bi 2WO 6 nanoplates with CoO x cocatalyst as high-performance piezocatalyst for hydrogen evolution. Dalton Trans 2023; 52:14210-14219. [PMID: 37766470 DOI: 10.1039/d3dt02077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Developing a high-performance piezocatalyst that directly transforms mechanical energy into hydrogen is highly desirable in the field of new energy. Herein, the Aurivillius-layered Bi2WO6 (BWO) nanoplates are prepared through a hydrothermal reaction at a moderate temperature of 160 °C, and exhibit strong piezoelectric properties, enabling them to catalyze water splitting through ultrasonic-induced piezocatalysis effect. The hydrogen evolution reaction (HER) and H2O2 generation efficiencies are measured to be 0.43 and 0.36 mmol g-1 h-1, respectively. To further boost piezocatalytic performance, cobalt oxide nanoparticles are intentionally photo-deposited onto these nanoplates as cocatalyst. This configuration results in a significantly boosted HER performance with an efficiency of 3.59 mmol g-1 h-1, which is 2.8 times higher than that of pristine nanoplates and demonstrates strong competitiveness compared to other reported piezocatalysts. The cobalt oxide cocatalyst plays a crucial role in facilitating efficient charge separation and migration, increasing the charge concentration, and ultimately enhancing piezocatalytic HER activity. Overall, this work highlights the potential of Aurivillius-layered bismuth oxide compounds as efficient piezocatalysts and provides valuable insights for designing high-performance piezocatalysts in the field of new energy.
Collapse
Affiliation(s)
- Lining Tan
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China.
| | - Xinran Sun
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China.
| | - Jintao Zhang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China.
| | - Chengchao Jin
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fei Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China.
| | - Daiming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China.
| |
Collapse
|
6
|
Ardeshirfard H, Elhamifar D. Magnetic cobalt oxide supported organosilica-sulfonic acid as a powerful nanocatalyst for the synthesis of tetrahydrobenzo[a]xanthen-11-ones. Sci Rep 2023; 13:14134. [PMID: 37644117 PMCID: PMC10465481 DOI: 10.1038/s41598-023-41234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
A novel core-shell structured magnetic cobalt oxide supported organosilica-sulfonic acid (Co3O4@SiO2/OS-SO3H) nanocomposite is prepared through a low-cost, simple, and clean method. The characterization of Co3O4@SiO2/OS-SO3H was performed by using Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). The TGA and FT-IR results illustrate the high stability of the designed nanocomposite. The SEM image showed a size of about 40 nm for the Co3O4@SiO2/OS-SO3H nanoparticles. Furthermore, according to the result of VSM analysis, the saturation magnetization of this nanocomposite was about 25 emu/g. This novel material was used as an efficient nanocatalyst for the synthesis of biologically active tetrahydrobenzo[a]xanthen-11-one derivatives. These products were obtained in high to excellent yields under green conditions. The recoverability and reusability of this catalyst were also investigated under applied conditions.
Collapse
Affiliation(s)
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| |
Collapse
|
7
|
Chen H, Yang M, Yue J, Chen G. Facile Synthesis of CoOOH Nanorings over Reduced Graphene Oxide and Their Application in the Reduction of p-Nitrophenol. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8862. [PMID: 36556669 PMCID: PMC9788638 DOI: 10.3390/ma15248862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/15/2023]
Abstract
A facile and one-step route has been employed for the synthesis of highly uniform CoOOH nanorings assembled on the surface of reduced graphene oxide (CoOOH/rGO nanocomposite). The physicochemical properties of the obtained CoOOH/rGO nanocomposite were characterized using X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 physical adsorption (BET) and X-ray photoelectron spectroscopy (XPS). The TEM and SEM results confirmed that CoOOH nanorings (edge length ∼ 95 nm) were uniformly decorated on reduced graphene oxide nanosheets using the simple precipitation-oxidation-reduction method. When used as a catalyst for the reduction of p-nitrophenol to p-aminophenol in the presence of excess NaBH4, the resulting CoOOH/rGO nanocomposite exhibited good activity and stability. When the initial concentration of p-nitrophenol was 1.25 × 10-4 mol·L-1, p-nitrophenol could be fully reduced within 3.25 min at room temperature. The apparent rate constant was estimated to be 1.77 min-1, which is higher than that of pure CoOOH nanorings. Moreover, p-nitrophenol could still be completely reduced within 6 min in the fifth successive cycle. The superior catalytic performance of the nanocomposite is attributed to the synergistic effect between the highly dispersed CoOOH nanorings and the unique surface properties of the reduced graphene oxide nanosheets, which greatly increased the concentration of p-nitrophenol near CoOOH nanorings on reduced graphene oxide surface and improved the local electron density at the interface.
Collapse
Affiliation(s)
- Huihui Chen
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Mei Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jun Yue
- Department of Chemical Engineering, Engineering and Technology Institute Groningen, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Guangwen Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Ali HSHM, Anwar Y, Khan SA. Vigna radiata Impregnated Zero-Valent CuAg NPs: Applications in Nitrophenols Reduction, Dyes Discoloration and Antibacterial Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
|
10
|
Wang L, Wang J, Ye C, Wang K, Zhao C, Wu Y, He Y. Photodeposition of CoO x nanoparticles on BiFeO 3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy. ULTRASONICS SONOCHEMISTRY 2021; 80:105813. [PMID: 34736118 PMCID: PMC8567443 DOI: 10.1016/j.ultsonch.2021.105813] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Piezoelectric materials have received much attention due to their great potential in environmental remediation by utilizing vibrational energy. In this paper, a novel piezoelectric catalyst, CoOx nanoparticles anchored BiFeO3 nanodisk composite, was intentionally synthesized via a photodeposition method and applied in piezocatalytic degradation of rhodamine B (RhB) under ultrasonic vibration. The as-synthesized CoOx/BiFeO3 composite presents high piezocatalytic efficiency and stability. The RhB degradation rate is determined to be 1.29 h-1, which is 2.38 folds higher than that of pure BiFeO3. Via optimizing the reaction conditions, the piezocatalytic degradation rate of the CoOx/BiFeO3 can be further increased to 3.20 h-1. A thorough characterization was implemented to investigate the structure, piezoelectric property, and charge separation efficiency of the CoOx/BiFeO3 to reveal the nature behind the high piezocatalytic activity. It is found that the CoOx nanoparticles are tightly adhered and uniformly dispersed on the surface of the BiFeO3 nanodisks. Strong interaction between CoOx and BiFeO3 triggers the formation of a heterojunction structure, which further induces the migration of the piezoinduced holes on the BiFeO3 to CoOx nanoparticles. The recombination of electron-hole pairs is retarded, thereby increasing the piezocatalytic performance greatly. This work may offer a new paradigm for the design of high-efficiency piezoelectric catalysts.
Collapse
Affiliation(s)
- Linkun Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Junfeng Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Chenyin Ye
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Kaiqi Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Chunran Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Khan SB, Kamal T, Asiri AM, Bakhsh EM. Iron doped nanocomposites based efficient catalyst for hydrogen production and reduction of organic pollutant. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Gulati A, Malik J, Mandeep, Kakkar R. Peanut shell biotemplate to fabricate porous magnetic Co3O4 coral reef and its catalytic properties for p-nitrophenol reduction and oxidative dye degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Anantharamaiah P, Chandra NS, Shashanka H, Kumar R, Sahoo B. Magnetic and catalytic properties of Cu-substituted SrFe12O19 synthesized by tartrate-gel method. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Pan H, Xie H, Chen G, Xu N, Wang M, Fakhri A. Cr2S3-Co3O4 on polyethylene glycol-chitosan nanocomposites with enhanced ultraviolet light photocatalysis activity, antibacterial and antioxidant studies. Int J Biol Macromol 2020; 148:608-614. [DOI: 10.1016/j.ijbiomac.2019.12.262] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 01/31/2023]
|
15
|
Efficient aqueous processing and utilization of high-quality graphene for high performance supercapacitor electrode. J Colloid Interface Sci 2020; 561:668-677. [DOI: 10.1016/j.jcis.2019.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
|
16
|
Wang Y, An T, Yan N, Yan Z, Zhao B, Zhao F. Nanochromates MCr 2O 4 (M = Co, Ni, Cu, Zn): Preparation, Characterization, and Catalytic Activity on the Thermal Decomposition of Fine AP and CL-20. ACS OMEGA 2020; 5:327-333. [PMID: 31956779 PMCID: PMC6964280 DOI: 10.1021/acsomega.9b02742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The chromate nanoparticles such as CoCr2O4, NiCr2O4, CuCr2O4, and ZnCr2O4 were prepared by a modified sol-gel method. The structural and morphological properties of the chromate nanoparticles were characterized by X-ray diffraction (XRD) and a scanning electron microscope (SEM). The catalytic effects of chromates on the thermal decomposition of fine ammonium perchlorate (FAP) and hexanitrohexaazaisowurtzitane (CL-20) were studied by the TG-DTG measurements. Results show that the addition of CoCr2O4, NiCr2O4, CuCr2O4, and ZnCr2O4 nanoparticles makes the activation energies for the thermal decomposition of FAP decrease by 93.9, 94.0, 83.1, and 67.0 kJ·mol-1, and the thermal decomposition temperatures decrease by 45.0, 24.9, 57.7, and 38.8 K respectively. On the other hand, a similar trend exists in the case of the thermal decomposition of CL-20. Therefore, the addition of nanochromates shows high catalytic efficiency on the thermal decomposition of both FAP and CL-20 components, which would be beneficial to promote the burning rate of propellants containing FAP and CL-20 components.
Collapse
|