1
|
Jiang Z, Wan X, Bai X, Chen Z, Zhu L, Feng J. Cd indirectly affects the structure and function of plankton ecosystems by affecting trophic interactions at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136242. [PMID: 39442296 DOI: 10.1016/j.jhazmat.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The toxic effects of potentially toxic elements have been observed at low concentrations; however, many studies have focused on single-species toxicity testing. Consequently, it is imperative to quantify toxicity at the community level at environmental concentrations. A microcosm approach was employed in conjunction with the Lotka-Volterra model to ascertain the impact of environmentally relevant concentrations of cadmium (Cd) on plankton abundance, community function, and stability. The results demonstrated that Cd led to a reduction in the abundance of Daphnia magna, yet unexpectedly resulted in an increase in the abundance of Brachionus calyciflorus and Paramecium caudatum. Additionally, Cd was observed to impede primary productivity, metabolic capacity and the stability of the planktonic community. Further model analyses revealed that the environmental concentration of Cd directly reduced intrinsic growth rates and intraspecific interactions. In particular, we found that the predation effects of Daphnia magna on Brachionus calyciflorus were significantly weakened. The findings of this study offer quantitative evidence that Cd exposure exerts an indirect influence on the structure and functioning of plankton ecosystems, mediated by alterations in trophic interactions. The findings indicate that the impact of environmental concentrations of potentially toxic elements may be underestimated in single-species experiments.
Collapse
Affiliation(s)
- Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuhao Wan
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhongzhi Chen
- InnoTech Alberta, Hwy 16A & 75 Street, P.O. Box 4000, Vegreville, AB T9C 1T4, Canada
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Han X, Gao Y, Yang L, Wei J, Li X, Wang L, Zhang X. Are recyclable plastics eco-friendly? Recycled PVC microplastics show higher toxicity than pristine PVC on Vallisneria natans, regardless of Cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107024. [PMID: 39003955 DOI: 10.1016/j.aquatox.2024.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
As environmental awareness increases, the use of recyclable plastics has risen. However, it is currently unclear whether recycled microplastics (MPs) pose a lesser or greater environmental risk than pristine MPs. Cadmium (Cd), known for its toxicity to most organisms, can bind with MPs and accumulate in sediments. Few studies have explored the environmental risks posed by the coexistence of recycled MPs and pristine MPs with Cd to rooted macrophytes. We investigated the effects of recycled PVC MPs (R-PVC-MPs) and pristine PVC MPs (PVC-MPs) on Vallisneria natans in the presence and absence of Cd. Results showed that at moderate and high Cd levels, R-PVC-MPs reduced plant Cd enrichment. Despite this, the fresh weight of V. natans exposed to R-PVC-MPs was significantly lower than those exposed to PVC-MPs. Furthermore, R-PVC-MPs had more negative impacts on the physiological traits of V. natans than PVC-MPs, as chlorophyll was significantly reduced across all Cd levels. At high Cd levels, both R-PVC-MPs and PVC-MPs caused significantly high oxidative stress, with no significant differences observed. The PCoA plot showed that different MPs cause noticeable variations within the same Cd concentration. The trait network diagrams illustrated strong interactions among traits, with R-PVC-MPs showing the highest complexity. Lower average degree and decreased edge density indicate that traits of plants with R-PVC-MPs addition are more independent of each other. Our findings suggest that recycled PVC MPs pose a greater environmental risk than pristine PVC MPs, offering reference for assessing the risks of recycled plastics in freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaohui Han
- Center of Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Gao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Junxin Wei
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China.
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Liu X, Guo Y, Li Y, Li Q, Yao L, Yu J, Chen H, Wu K, Qiu D, Wu Z, Zhou Q. Mitigating sediment cadmium contamination through combining PGPR Enterobacter ludwigii with the submerged macrophyte Vallisneria natans. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134662. [PMID: 38788574 DOI: 10.1016/j.jhazmat.2024.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.
Collapse
Affiliation(s)
- Xiangfen Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Guo
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yahua Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qianzheng Li
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lu Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junqi Yu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixuan Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongru Qiu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiaohong Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Carvalho MEA, Agathokleous E, Nogueira ML, Brunetto G, Brown PH, Azevedo RA. Neutral-to-positive cadmium effects on germination and seedling vigor, with and without seed priming. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130813. [PMID: 36706487 DOI: 10.1016/j.jhazmat.2023.130813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
This review gathered and analyzed data about (i) the Cd-induced impacts on seed germination and seedling vigor, and (ii) the use of different priming agents to mitigate Cd-induced impacts on the early plant development. Critical evaluation of the obtained data revealed intriguing results. First, seeds of diverse species can endure exposures to Cd. Such endurance is exhibited as maintenance of or even improvement in the seed germination and vigor (up to 15% and 70%, respectively). Second, the main factors influencing seed tolerance to Cd toxicity are related to temporal variations in anatomical, physiological, and/or biochemical features. Third, Cd can trigger diverse transgenerational effects on plants by shaping seed endophytes, by modulating seed provisioning with resources and regulatory elements, and/or by altering seed (epi)genomics. Fourth, different chemical, biological and physical priming agents can mitigate Cd-induced impacts on seeds, sometimes enhancing their performance over the control (reference) values. Overall, this review shows that the impacts of Cd on seed germination and vigor encompass not only negative outcomes but also neutral and positive ones, depending upon the Cd dose, media properties, plant species and genotypes, plant developmental stage and organ, and management approaches. Increasing our understanding of plant tolerance mechanisms against the growing background Cd pollution is relevant to support breeding programs, agricultural practices, and health-environmental policies.
Collapse
Affiliation(s)
- Marcia E A Carvalho
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Marina L Nogueira
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Patrick H Brown
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Ricardo A Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
5
|
Bai X, Jiang Y, Jiang Z, Zhu L, Feng J. Nutrient potentiate the responses of plankton community structure and metabolites to cadmium: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128506. [PMID: 35739684 DOI: 10.1016/j.jhazmat.2022.128506] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Metal pollution is a worldwide concern and may pose risks to aquatic organisms, communities, and ecosystems. The toxic effects of metals at the organism level are relatively clear. However, their impacts at the community level are still poorly understood, especially with concurred eutrophication in surface water. In the present study, the effects of Cd on the plankton community structure and function under varying nutrient conditions were evaluated using a microcosm study. The employed concentrations of Cd and nutrient were based on the values currently measured in the freshwater ecosystem. For the plankton structure, our results showed that the Chl a concentration, the abundances of total phytoplankton, Cyanophyta, and Chlorophyta, and the abundance of Copepoda decreased by Cd consistently. The Cyanophyta Oscillatoria tenuis and Copepoda nauplius were the most sensitive species to Cd in the phytoplankton and zooplankton community, respectively. For the community effects, we found the inhibitory effects of Cd on the photosystem II (PSII) activity of phytoplankton community because of the consistent decrease in the chlorophyll fluorescence parameters (Fv/Fm, Y(Ⅱ), and ETR). Furthermore, the reductions of DOC and pH by Cd were only found in the high nutrient condition, which indicated that the toxic effects of Cd on the community structure and community metabolites were aggravated by the increased nutrient. This study emphasizes the importance of considering nutrient conditions when assessing the metal ecotoxicological effects at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yueming Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
6
|
Dong R, Liu R, Xu Y, Liu W, Wang L, Liang X, Huang Q, Sun Y. Single and joint toxicity of polymethyl methacrylate microplastics and As (V) on rapeseed (Brassia campestris L.). CHEMOSPHERE 2022; 291:133066. [PMID: 34861256 DOI: 10.1016/j.chemosphere.2021.133066] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Most microplastics and arsenic (As) have been released into farmland via industrial and agricultural activities, posing a potential threat to crop growth and food safety. Thus far, few studies have focused on the phytoxicity of microplastics and As to leafy vegetable. In this study, we evaluated the single and combined toxicological effects of polymethyl methacrylate (PMMA) and As(V) on rapeseed (Brassia campestris L.). Single treatments of two sizes of PMMA particles, namely PMMA nano-plastics (PMMANPs) and PMMA micro-plastics (PMMAMPs) and As(V) significantly (P < 0.05) inhibited the germination index (GI) of rapeseed. The IC50 indicates that PMMANPs were more toxic than PMMAMPs. Combine-pollution experiments demonstrated that the GI, biomass, root length, and sprout length of the rapeseed under the combined treatment were lower than those subjected to As(V) or PMMANPs single treatment. Analysis of variance showed that the interaction effects of PMMANPs and As(V) for GI and root length were significant, and there was synergistic interaction between PMMANPs and As(V) on rapeseed germination. PMMANPs promoted the accumulation of As in sprouts under high As(V) concentrations (40 and 60 mg/L). The activities of lipase in rapeseed generally increased under single and combined treatments of As(V) and PMMANPs, and while α-amylase activities first increased and then decreased with the increase of PMMANPs. It appears that the combined stress of microplastics and As(V) exhibited synergistic interaction on the growth of rapeseed.
Collapse
Affiliation(s)
- Ruyin Dong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Rongle Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Weitao Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Xuefeng Liang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Qingqing Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
7
|
Lyu R, Gu B, Zhang T, Yang Z. Simultaneous removal of Cd (II), Ni (II), and Pb (II) from water by a submerged macrophyte pondweed (Potamogeton malaianus). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2637-2647. [PMID: 34331379 DOI: 10.1002/wer.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The current work investigated the potential of submerged macrophyte pondweed (Potamogeton malaianus) in treating cadmium, nickel, and lead-contaminated water through phytoremediation. The adsorption for the three metal ions occurred rapidly within 2 h and attained dynamic equilibrium in no more than 72 h. The removal efficiencies of Cd (II), Ni (II), and Pb (II) were high, passing 94% in both single- and multi-metal systems. The kinetic adsorption curves of Cd (II), Ni (II), and Pb (II) were fitted well by both pseudo-first-order and pseudo-second-order kinetics (R2 = 0.9875-0.9995). The equilibrium adsorption capacities of Cd (II), Ni (II), and Pb (II) for P. malaianus were 6.29-6.97 mg kg-1 . In plants, the higher concentration of each metal ions was accumulated in leaves (12.44-38.15 mg kg-1 ) than in roots (10.32-26.10 mg kg-1 ). The chlorophyll contents increased from 0.69 to 0.89-1.00 mg g-1 under the treatment of Cd (II), Ni (II), and Pb (II), whereas the chlorophyll a/b ratio was kept constant. There was no significant difference between single- and multi-metal systems. FT-IR spectra showed that COH and C═N might be involved in the adsorption of Cd (II), Ni (II), and Pb (II). This study demonstrated that P. malaianus could be a suitable submerged macrophyte for the simultaneous removal of Cd (II), Ni (II), and Pb (II) from water.
Collapse
Affiliation(s)
- Rongtao Lyu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Bowen Gu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Irfan M, Liu X, Hussain K, Mushtaq S, Cabrera J, Zhang P. The global research trend on cadmium in freshwater: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-13894-7. [PMID: 33877520 DOI: 10.1007/s11356-021-13894-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium pollution turns out to be a global environmental problem. This study conducted a quantitative and qualitative bibliometric analysis based on 9188 research items from the Web of Science Core Collection published in the last 20 years (2000-2020), presenting an in-depth statistical investigation of global freshwater cadmium research progress and developing trend. Our results demonstrated that the researchers from China, the USA, and India contribute the most to this field. The primary sources of cadmium are mining, industry, wastewater, sedimentation, and agricultural activities. In developing countries, cadmium exposure occurs mainly through the air, freshwater, and food. Fish and vegetables are the main food sources of cadmium for humans because of their high accumulation capability. Source evaluation, detection, and remediation represent the main technologies used to clean up cadmium-contaminated sites. To mitigate the risk of cadmium contamination in freshwater, biomarker-based cadmium monitoring methods and integrated policies/strategies to reduce cadmium exposure merit further concern.
Collapse
Affiliation(s)
- Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China.
| | - Khalid Hussain
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Suraya Mushtaq
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|
9
|
Wang L, Gao Y, Jiang W, Chen J, Chen Y, Zhang X, Wang G. Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. CHEMOSPHERE 2021; 266:128979. [PMID: 33218728 DOI: 10.1016/j.chemosphere.2020.128979] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/07/2023]
Abstract
Microplastics and heavy metals are discharged into a freshwater environment either directly or via surface runoff and are largely deposited in sediments, posing risks to aquatic organisms. Few studies have thus far been devoted to the interaction of microplastics and heavy metals in sediments. Whether microplastics can affect the toxicity and accumulation of heavy metals in submerged macrophytes remains unclear. We evaluated the effects of polyvinyl chloride microplastics (PVC-MPs) and cadmium (Cd) exposure levels (0, 5, 15, and 25 mg) on Vallisneria natans (Lour.) Hara grown in sediment in a microcosm experiment for 14 d. In this study, PVC-MPs decreased the fresh weights of V. natans in the absence of Cd and markedly reduced the fresh weights at 5 and 15 mg Cd exposure levels. Moreover, PVC-MPs substantially increased the malondialdehyde (MDA) content of V. natans leaves at a Cd exposure of 25 mg. However, the PVC-MPs neither reduced the Cd concentration nor independently increased the antioxidant enzyme activities of the plants. These findings indicate that microplastics can independently, or jointly with a Cd contaminant, inhibit the growth of submerged macrophytes rather than reduce Cd toxicity. To our knowledge, this study is the first to evaluate the effects of microplastics and Cd exposure in sediments on the growth and physiological traits of submerged macrophytes, which could provide important implications for the interaction and future risk assessment of microplastics and heavy metals in sediments of freshwater ecosystems.
Collapse
Affiliation(s)
- Lei Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Yuxuan Gao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Wei Jiang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Junxiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| |
Collapse
|
10
|
Zheng Yarong, Rong S, Wei D, Yan W. Correlation between Riparian Plant Communities and Plantpropagule Banks in Dicun Stream. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x20060120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang L, Gao Y, Wang X, Qin Z, Liu B, Zhang X, Wang G. Warming enhances the cadmium toxicity on macrophyte Myriophyllum aquaticum (Vell.) Verd. seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115912. [PMID: 33187844 DOI: 10.1016/j.envpol.2020.115912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Due to a close contact with water column, submerged macrophytes are easily disturbed by environment change in freshwater ecosystems, especially at the seedling stage. In recent decades, freshwater ecosystems have been subject to severe cadmium (Cd) pollution, which can cause toxic effects on the growth of submerged macrophytes. Moreover, the temperature rise resulting from climate warming and water level decline may further aggravate such effect, especially in shallow lakes. Here, we investigated the independent and interaction effects of Cd exposure levels (0, 0.5, 1, and 2.5 mg L-1) and temperature (15, 25, and 30 °C) on morphological and physiological traits of Myriophyllum aquaticum (Vell.) Verd. Seedlings generated from propagules and seeds. The temperature rise and Cd exposure generally resulted in a significant increase of Cd concentrations and antioxidant enzyme activities in leaves, as well as a decrease of chlorophyll a and b concentrations. The number and length of leaves generated from propagules always show a downward trend with the increase of Cd exposure, regardless of the temperature. Moreover, the lowest leaf number and length always occurred at high temperature (i.e. 30 °C) when the Cd exposure level increased to 1 and 2.5 mg L-1. For the seedlings generated from seeds, the temperature rise caused an increase of leaf emergence rate under low Cd exposure levels, but resulted in a significant decrease with the Cd exposure level. This study indicates the negative effects of Cd exposure and temperature rise on submerged macrophytes at the seedling stage, and highlights that temperature rise would enhance Cd toxicity.
Collapse
Affiliation(s)
- Lei Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Yuxuan Gao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Xuan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Zhangyi Qin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Baogui Liu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| |
Collapse
|