1
|
Pino-Otín MR, Valenzuela A, Gan C, Lorca G, Ferrando N, Langa E, Ballestero D. Ecotoxicity of five veterinary antibiotics on indicator organisms and water and soil communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116185. [PMID: 38489906 DOI: 10.1016/j.ecoenv.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | - Cristina Gan
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Guillermo Lorca
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Natalia Ferrando
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| |
Collapse
|
2
|
Xia J, Ge C, Yao H. Identification of functional microflora underlying the biodegradation of sulfadiazine-contaminated substrates by Hermetia illucens. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132892. [PMID: 37922583 DOI: 10.1016/j.jhazmat.2023.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The increasing discharge of antibiotic residues into the natural environment, stemming from both human activities and animal farming, has detrimental effects on natural ecosystems and serves as a significant driving force for the spread of antibiotic resistance. Biodegradation is an important method for the elimination of antibiotics from contaminated substrates, but the identifying in situ microbial populations involved in antibiotic degradation is challenging. Here, DNA stable isotope probing (DNA-SIP) was employed to identify active sulfadiazine (SDZ) degrading microbes in the gut of black soldier fly larvae (BSFLs). At an initial SDZ concentration of 100 mg kg-1, the highest degradation efficiency reached 73.99% after 6 days at 28 °C. DNA-SIP revealed the incorporation of 13C6 from labeled SDZ in 9 genera, namely, Clostridum sensu stricto 1, Nesterenkonia, Bacillus, Halomonas, Dysgonomonas, Caldalkalibacillus, Enterococcus, g_unclassified_f_Xanthomonadaceae and g_unclassified_f_Micrococcaceae. Co-occurrence network analysis revealed that a significant positive correlation existed among SDZ degrading microbes in the gut microbiota, e.g., between Clostridium sensu stricto 1 and Nesterenkonia. Significant increases in carbohydrate metabolism, membrane transport and translation were crucial in the biodegradation of SDZ in the BSFL gut. These results elucidate the structure of SDZ-degrading microbial communities in the BSFL gut and in situ degradation mechanisms.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China.
| |
Collapse
|
3
|
Tan J, Chen Y, He J, Occhipinti LG, Wang Z, Zhou X. Two-dimensional material-enhanced surface plasmon resonance for antibiotic sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131644. [PMID: 37209558 DOI: 10.1016/j.jhazmat.2023.131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Two-dimensional (2D) materials attract attention from the academic community due to their excellent properties, and their wide application in sensing is expected to revolutionize environmental monitoring, medical diagnostics, and food safety. In this work, we systematically evaluate the effects of 2D materials on the Au chip surface plasmon resonance (SPR) sensor. The results reveal that 2D materials cannot improve the sensitivity of intensity-modulated SPR sensors. However, there exists an optimal real part of RI of 3.5-4.0 and optimal thickness when choosing nanomaterials for sensitivity enhancement of SPR sensors in angular modulation. In addition, the smaller the imaginary part of the nanomaterial RI, the higher the sensitivity of the proposed Au SPR sensor. The 2D material's thickness needed for the highest sensitivity decreases with increasing real part and imaginary part of the RI. As a case study, we developed a 5 nm-thickness MoS2-enhanced SPR biosensor, which exhibited a low sulfonamides (SAs) detection limit of 0.05 μg/L based on a group-targeting indirect competitive immunoassay, nearly 12-fold lower than that of the bare Au SPR system. The proposed criteria help to shed light on the 2D material-Au surface interaction, which has greatly promoted the development of novel SPR biosensing with outstanding sensitivity.
Collapse
Affiliation(s)
- Jisui Tan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yangyang Chen
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing He
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Luigi G Occhipinti
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Wahla AQ, Anwar S, Fareed MI, Ikram W, Ali L, Alharby HF, Bamagoos AA, Almaghamsi AA, Iqbal S, Ali S. Immobilization of metribuzin-degrading bacteria on biochar: Enhanced soil remediation and bacterial community restoration. Front Microbiol 2023; 13:1027284. [PMID: 36875536 PMCID: PMC9983365 DOI: 10.3389/fmicb.2022.1027284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 02/17/2023] Open
Abstract
Metribuzin (MB), a triazinone herbicide is extensively sprayed for weed control in agriculture, has been reported to contaminate soil, groundwater, and surface waters. In soil, MB residues can negatively affect not only the germination of subsequent crops but also disturb soil bacterial community. The present study describes the use of biochar as a carrier material to immobilize MB-degrading bacterial consortium, for remediation of MB-contaminated soil and restoration of soil bacterial community in soil microcosms. The bacterial consortium (MB3R) comprised four bacterial strains, i.e., Rhodococcus rhodochrous AQ1, Bacillus tequilensis AQ2, Bacillus aryabhattai AQ3, and Bacillus safensis AQ4. Significantly higher MB remediation was observed in soil augmented with bacterial consortium immobilized on biochar compared to the soil augmented with un-immobilized bacterial consortium. Immobilization of MB3R on biochar resulted in higher MB degradation rate (0.017 Kd-1) and reduced half-life (40 days) compared to 0.010 Kd-1 degradation rate and 68 day half-life in treatments where un-immobilized bacterial consortium was employed. It is worth mentioning that the MB degradation products metribuzin-desamino (DA), metribuzin-diketo (DK), and metribuzin desamino-diketo (DADK) were detected in the treatments where MB3R was inoculated either alone or in combination with biochar. MB contamination significantly altered the composition of soil bacteria. However, soil bacterial community was conserved in response to augmentation with MB3R immobilized on biochar. Immobilization of the bacterial consortium MB3R on biochar can potentially be exploited for remediation of MB-contaminated soil and protecting its microbiota.
Collapse
Affiliation(s)
- Abdul Qadeer Wahla
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Samina Anwar
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Irfan Fareed
- Department of Life Sciences, School of Science, University of Management and Technology, Johar Town, Lahore, Pakistan
| | - Wasiq Ikram
- School of Botany, Minhaj University Lahore (MUL), Lahore, Pakistan
| | - Liaqat Ali
- Department of Soil and Environmental Sciences, University of Agriculture Faisalabad, Sub Campus Burewala, Vehari, Pakistan
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf A. Almaghamsi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Shafaqat Ali
- Department of Environmental Science, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Han J, Xu Y, Xu D, Niu Y, Li L, Li F, Li Z, Wang H. Mechanism of downward migration of quinolone antibiotics in antibiotics polluted natural soil replenishment water and its effect on soil microorganisms. ENVIRONMENTAL RESEARCH 2023; 218:115032. [PMID: 36502909 DOI: 10.1016/j.envres.2022.115032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reclaimed water is widely concerned as an effective recharge of groundwater and surface water, but trace organic pollutants produced by traditional wastewater treatment plants (WWTPs) would cause environmental pollution (water and soil) during infiltration. Therefore, the effects of reclaimed water containing ofloxacin (OFL) and ciprofloxacin (CIP) in antibiotics polluted natural soil (APNS) were investigated by simulating soil aquifer treatment systems (SATs). The experiment results showed that OFL and CIP in water were adsorbed and microbially degraded mainly at 30 cm, and the concentration of OFL and CIP in soil increased with depth, which were mainly due to the desorption from APNS. Concurrently, the change in replenishment water concentration also significantly affected OFL and CIP in pore water and soil. Although OFL and CIP inhibited the diversity of soil microbial community, they also promoted the growth of some microorganisms. As the dominant bacteria, Proteobacteria and Acidobacteriota can effectively participate in the degradation of OFL and CIP. The degradation effects of soil microorganisms on OFL and CIP were 45.48% and 42.39%, respectively, indicating that soil microorganisms selectively degraded pollutants. This experiment was carried out on APNS, which provided a reference for future studies on the migration of trace organic pollutants under natural conditions.
Collapse
Affiliation(s)
- Jinlong Han
- Tangshan Key Laboratory of Bioelectrochemical Water Pollution Control Technology, North China University of Science and Technology, Tangshan, 063210, PR China; Beijing Institute of Water Science and Technology, Beijing, 100048, PR China; School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Yufei Xu
- Tangshan Key Laboratory of Bioelectrochemical Water Pollution Control Technology, North China University of Science and Technology, Tangshan, 063210, PR China
| | - Duo Xu
- Tangshan Key Laboratory of Bioelectrochemical Water Pollution Control Technology, North China University of Science and Technology, Tangshan, 063210, PR China
| | - Yunxia Niu
- Tangshan Key Laboratory of Bioelectrochemical Water Pollution Control Technology, North China University of Science and Technology, Tangshan, 063210, PR China; Hebei Mining Area Ecological Restoration Industry Technology Research Institute Tangshan, 063000, PR China
| | - Lei Li
- Beijing Institute of Water Science and Technology, Beijing, 100048, PR China
| | - Fuping Li
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute Tangshan, 063000, PR China
| | - Zhaoxin Li
- Beijing Institute of Water Science and Technology, Beijing, 100048, PR China; School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, 056038, PR China.
| | - Hao Wang
- Tangshan Key Laboratory of Bioelectrochemical Water Pollution Control Technology, North China University of Science and Technology, Tangshan, 063210, PR China; Hebei Mining Area Ecological Restoration Industry Technology Research Institute Tangshan, 063000, PR China.
| |
Collapse
|
6
|
Spectroscopic, structural, and intermolecular interactions of 4-(2‑hydroxy-3-methoxybenzylideneamino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide enol-imine and keto-amine isomers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Zhao J, Fang S, Liu G, Qi W, Bai Y, Liu H, Qu J. Role of ammonia-oxidizing microorganisms in the removal of organic micropollutants during simulated riverbank filtration. WATER RESEARCH 2022; 226:119250. [PMID: 36274354 DOI: 10.1016/j.watres.2022.119250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biodegradation plays an important role in the removal of organic micropollutants (OMPs) during riverbank filtration (RBF) for drinking water production. The ability of ammonia-oxidizing microorganisms (AOM) to remove OMPs has attracted increasing attention. However, the distribution of AOM in RBF and its role in the degradation of OMPs remains unknown. In this study, the behavior of 128 selected OMPs and the distribution of AOM and their roles in the degradation of OMPs in RBF were explored by column and batch experiments simulating the first meter of the riverbank. The results showed that the selected OMPs were effectively removed (82/128 OMPs, >70% removal) primarily by biodegradation and partly by adsorption. Inefficiently removed OMPs tended to have low molecular weights, low log P, and contain secondary amides, secondary sulfonamides, secondary ketimines, and benzyls. In terms of the microbial communities, the relative abundance of AOM increased from 0.1%-0.2% (inlet-sand) to 5.3%-5.9% (outlet-sand), which was dominated by ammonia-oxidizing archaea whose relative abundance increased from 23%-72% (inlet-sand) to 97% (outlet-sand). Comammox accounted for 23%-64% in the inlet-sand and 1% in the outlet-sand. The abundances of AOM amoA genes kept stable in the inlet-sand of control columns, while decreased by 78% in the treatment columns, suggesting the inhibition effect of allylthiourea (ATU) on AOM. It is observed that AOM played an important role in the degradation of OMPs, where its inhibition led to the corresponding inhibition of 32 OMPs (5/32 were completely suppressed). In particular, OMPs with low molecular weights and containing primary amides, secondary amides, benzyls, and secondary sulfonamides were more likely to be removed by AOM. This study reveals the vital role of AOM in the removal of OMPs, deepens our understanding of the degradation of OMPs in RBF, and offers valuable insights into the physiochemical properties of OMPs and their AOM co-metabolic potential.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Feng L, Yuan F, Xie J, Duan X, Zhou Q, Chen Y, Wang Y, Fei Z, Yan Y, Wang F. Sulfadiazine inhibits hydrogen production during sludge anaerobic fermentation by affecting pyruvate decarboxylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156415. [PMID: 35660434 DOI: 10.1016/j.scitotenv.2022.156415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The overuse and random discharge of antibiotics can cause serious environmental pollution. Sludge acts as a repository for antibiotics, its anaerobic fermentation process will inevitably be affected. This study investigated the effects of a typical antibiotic contaminant, sulfadiazine (SDZ), on the anaerobic fermentation of sludge for hydrogen production. Results demonstrated that the production of hydrogen was significantly inhibited by SDZ, and the inhibition was enhanced with increasing SDZ content. Within 5 days, the cumulative amount of hydrogen with 500 mg SDZ/kg dry sludge was 8.5 mL, which was only 32.2% of that in the control (26.4 mL). Mechanistic investigation showed that the reduced hydrogen production when SDZ existed was mainly attributed to the suppression of pyruvate decarboxylation during the hydrogen production stage, and the diversity of microorganisms, especially the abundance of microorganisms and the activities of key enzymes closely related to hydrogen production were inhibited with SDZ, resulting in less hydrogen accumulation.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Feiyi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jing Xie
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yanqing Wang
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China
| | - Zhenghao Fei
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China.
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
9
|
Bai Y, Ruan X, Li R, Zhang Y, Wang Z. Metagenomics-based antibiotic resistance genes diversity and prevalence risk revealed by pathogenic bacterial host in Taihu Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2531-2543. [PMID: 34292452 DOI: 10.1007/s10653-021-01021-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants. In Taihu Lake, as a typical representative of freshwater system in China, the ARGs occurrence and abundance was of great importance for ecological risk control and public health protection. In this research, high-throughput sequencing and metagenomics technique were used to investigate the seasonal ARGs profile in overlying water and sediment at typical area of Taihu Lake. Besides, taxonomy pattern of ARGs host bacteria and potential pathogens were identified. The results showed that 33 ARG subtypes and 11 ARG types were detected in research area, among which bacitracin, multidrug and sulfonamides resistance gene were with the highest abundance. The relative abundance of ARGs in overlying water and sediment ranged from 1.68 to 661.05 ppm and from 1.93 to 49.47 ppm, respectively. ARG host (18 bacteria genus) were identified and annotated, among which Clostridium botulinum, Pseudomonas aeruginosa and Klebsiella pneumonia were pathogenic bacteria. The pathogens were mostly detected at Xukou Bay in spring and fall, which might be caused by the inlet water from aquaculture area of Yangcheng Lake. Pseudomonas was the most abundant ARGs host (ant2ib, baca, bl2d_oxa2,mexb, mexf, mexw and oprn), which may facilitate the propagation of ARGs in freshwater system.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, 223# Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Rongfu Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Yaping Zhang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Zongzhi Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, 223# Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
10
|
Zhao J, Fang S, Qi W, Liu H, Qu J. Do NH 4+-N and AOB affect atenolol removal during simulated riverbank filtration? CHEMOSPHERE 2022; 301:134653. [PMID: 35447203 DOI: 10.1016/j.chemosphere.2022.134653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Biodegradation is regarding as the most important organic micro-pollutants (OMPs) removal mechanism during riverbank filtration (RBF), but the OMPs co-metabolism mechanism and the role of NH4+-N during this process are not well understood. Here, we selected atenolol as a typical OMP to explore the effect of NH4+-N concentration on atenolol removal and the role of ammonia oxidizing bacteria (AOB) in atenolol biodegradation. The results showed that RBF is an effective barrier for atenolol mainly by biodegradation and adsorption. The ratio of biodegradation and adsorption to atenolol removal was dependent on atenolol concentration. Specifically, atenolol with low concentration (500 ng/L) is almost completely removed by adsorption, while atenolol with higher concentration (100 μg/L) is removed by biodegradation (51.7%) and adsorption (30.8%). Long-term difference in influent NH4+-N concentrations did not show significant impact on atenolol (500 ng/L) removal, which was mainly dominated by adsorption. Besides, AOB enhanced the removal of atenolol (100 μg/L) as biodegradation played a more crucial role in removing atenolol under this concentration. Both AOB and heterotrophic bacteria can degrade atenolol during RBF, but the degree of AOB's contribution may be related to the concentration of atenolol exposure. The main reactions occurred during atenolol biodegradation possibly includes primary amide hydrolysis, hydroxylation and secondary amine depropylation. About 90% of the bio-transformed atenolol was produced as atenolol acid. AOB could transform atenolol to atenolol acid by inducing primary amide hydrolysis but failed to degrade atenolol acid further under the conditions of this paper. This study provides novel insights regarding the roles played by AOB in OMPs biotransformation during RBF.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
|
12
|
Huo L, Zhao S, Shi B, Wang H, He S. Bacterial community change and antibiotic resistance promotion after exposure to sulfadiazine and the role of UV/H 2O 2-GAC treatment. CHEMOSPHERE 2021; 283:131214. [PMID: 34147982 DOI: 10.1016/j.chemosphere.2021.131214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Effects of sulfadiazine on bacterial community and antibiotic resistance genes (ARGs) in drinking water distribution systems (DWDSs) were investigated in this study. Three DWDSs, including sand filtered (SF) DWDSs, granular active carbon (GAC) filtration DWDSs, and UV/H2O2-GAC DWDSs, were used to deliver sand filtered water, GAC filtered water, and UV/H2O2-GAC treated water, respectively. UV/H2O2-GAC filtration can remove the dissolved organic matter effectively, which resulted in the lowest bacterial diversity, biomass and ARGs in effluents and biofilm of DWDSs. When sulfadiazine was added to the sand filtered water, the dehydrogenase concentration and bacterial activity of bacterial community increased in effluents and biofilm of different DWDSs, inducing more extracellular polymeric substances (EPS) production. The proteins increasement percentage was 26.9%, 11.7% and 19.1% in biofilm of three DWDSs, respectively. And the proteins increased to 830.30 ± 20.56 μg cm-2, 687.04 ± 18.65 μg cm-2 and 586.07 ± 16.24 μg cm-2, respectively. The increase of EPS promoted biofilm formation and increased the chlorine-resistance capability of bacteria. Therefore, the relative abundance of Clostridium_sensu_stricto_1 increased to 12.22%, 10.41% and 0.33% in biofilm of the three DWDSs, respectively. Candidatus_Odyssella also increased in the effluents and biofilm of the three DWDSs. These antibiotic resistance bacteria increase in DWDSs also induced the ARGs promotion, including sul1, sul2, sul3, mexA and class 1 integrons (int1). However, UV/H2O2-GAC filtration induced the lowest increase of dehydrogenase and EPS production through sulfadiazine removal efficiently, resulting in the least bacterial community change and ARGs promotion in UV/H2O2-GAC DWDSs.
Collapse
Affiliation(s)
- Lixin Huo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shehang Zhao
- Qingdao University of Technology, Qingdao, 266033, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shouyang He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
13
|
Pan W, Huang Q, Huang G, Xing L. Modeling the effects of temperature on the migration and transformation of nitrate during riverbank filtration using HYDRUS-2D. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146656. [PMID: 33865130 DOI: 10.1016/j.scitotenv.2021.146656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Riverbank filtration is a natural aquifer-based process. The nitrogen dynamics in a riverbank filtration system are affected by many factors, including temperature, water quality, and travel time, which cannot be quantified easily. In this study, a field experiment was conducted to investigate nitrogen transport during riverbank filtration. The HYDRUS-2D software package was used to investigate and quantify the factors that affect the fate of nitrogen. The effects of temperature, water quality, and travel time on nitrate transport were considered. The model was calibrated and validated using field experimental data from the river water and groundwater during riverbank filtration at different periods. The results showed that HYDRUS-2D adequately simulated nitrate transport during riverbank filtration. The denitrification rate constant exhibited a positive exponential relationship with temperature. An empirical formula describing this relationship in riverbank filtration was developed and validated. In addition, the denitrification rate can be quantified within a specified temperature data range under field conditions. Compared with indoor experimental conditions, for the same temperature, there was a 10-fold increase in the denitrification rate constant under field conditions. The results showed that most of the nitrate removal occurred in the riparian zone at high temperatures during riverbank filtration. We concluded that the fate of nitrate in the riparian zone is strongly controlled by groundwater temperature. Travel time also plays an important role in nitrate removal during riverbank filtration.
Collapse
Affiliation(s)
- Weiyan Pan
- School of Water Conservancy and Environment, University of Jinan, Shandong 250022, PR China.
| | - Quanzhong Huang
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China.
| | - Guanhua Huang
- Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing 100083, PR China
| | - Liting Xing
- School of Water Conservancy and Environment, University of Jinan, Shandong 250022, PR China
| |
Collapse
|
14
|
ZIF-8 assisted synthesis of magnetic core–shell Fe3O4@CuS nanoparticles for efficient sulfadiazine degradation via H2O2 activation: Performance and mechanism. J Colloid Interface Sci 2021; 594:502-512. [DOI: 10.1016/j.jcis.2021.03.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/13/2023]
|
15
|
Chen J, Liu SS, He LX, Cheng YX, Ye P, Li J, Ying GG, Wang YJ, Yang F. The fate of sulfonamides in the process of phytoremediation in hydroponics. WATER RESEARCH 2021; 198:117145. [PMID: 33905974 DOI: 10.1016/j.watres.2021.117145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 05/12/2023]
Abstract
Phytoremediation has been proven to be an alternative in-situ treatment technique for sulfonamide polluted wastewater. However, the fate of sulfonamides in the phytoremediation process of multiple sulfonamides coexistence is unclear. Therefore, the possibility and mechanism of phytoremediation of ten sulfonamides by different wetland plants through hydroponics were investigated in this study. The phytoremediation rates of Σsulfonamides by different wetland plants were from 44.5% to 56.9%. Mass balance analysis showed that rhizosphere biodegradation (90.2% - 92.2%) dominated the phytoremediation of Σsulfonamides, while hydrolysis (7.63% - 8.95%) and plant uptake (0.05% - 0.17%) accounted for a small proportion. It is worth mentioning that the dissipation of the target sulfonamides in the hydroponic system followed the first-order reaction kinetic model, with half-lives of 13.3 d to 53.3 d, which are close to or even lower than that of aerobic biodegradation in river water, sediment, and piggery wastewater. Six of the ten spiked sulfonamides were detected in plant samples demonstrated that the selective uptake of plants under the coexistence of multiple sulfonamides. The distribution of sulfonamides (concentrations and uptake amounts) in plant tissues followed the sequence of root > stem > leaf in this study, but the distribution in stems and leaves needs further study. The uptake and rhizosphere biodegradation of Cyperus papyrus to sulfonamides are optimally resulting that its phytoremediation rate is significantly higher than other plants (p < 0.05), which indicates that plant species is one of the key factors affecting the phytoremediation efficiency of sulfonamides. These findings verify the feasibility of phytoremediation of sulfonamides, and provide new insights into the fate of sulfonamides in the process of phytoremediation.
Collapse
Affiliation(s)
- Jun Chen
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Shuang-Shuang Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yu-Xiao Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jie Li
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yi-Jie Wang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China.
| | - Fang Yang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China.
| |
Collapse
|
16
|
Parameter optimization of tetracycline removal by vanadium oxide nano cuboids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Serna-Carrizales JC, Collins-Martínez VH, Flórez E, Gomez-Duran CF, Palestino G, Ocampo-Pérez R. Adsorption of sulfamethoxazole, sulfadiazine and sulfametazine in single and ternary systems on activated carbon. Experimental and DFT computations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Li K, Tang J, He Y, Guo J, Li L. Theoretical study on the adsorption and catalytic degradation mechanism of sulfacetamide on anatase TiO 2(001) and (101) surfaces. NEW J CHEM 2021. [DOI: 10.1039/d0nj05460g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the adsorption of sulfacetamide on anatase titanium dioxide (001) and (101) was studied. The mechanism of six degradation pathways of sulfacetamide was discussed.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
| | - Jing Tang
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
- College of Pharmacy
- Southwestern Medical University
| | - Yang He
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
- College of Pharmacy
- Southwestern Medical University
| | - Jianmin Guo
- College of Basic Medical, Southwestern Medical University
- Luzhou
- China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
| |
Collapse
|
19
|
Chen J, Tong T, Jiang X, Xie S. Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115040. [PMID: 32593905 DOI: 10.1016/j.envpol.2020.115040] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The pollution of wastewater with antibiotics and antibiotics resistance genes has attracted public concerns about ecosystem and global health. Swine wastewater can contain high concentrations of antibiotics, especially sulfonamides, even after full-scale wastewater treatment. In this study, mesocosm-scale vertical flow constructed wetlands (VF-CWs) were applied to abate nutrients and antibiotics in swine wastewater containing sulfonamides. VF-CWs performed well in the removal of both nutrients and antibiotics. Sulfonamides did not influence total organic carbon (TOC) and total phosphorus (TP) removal, and even slightly enhanced NH4+-N removal. High removal efficiencies (26.42-84.05%) were achieved for sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfamethazine (SMZ). Together with lab-scale sorption and biodegradation experiments, microbial degradation was found to be the most important removal mechanism for sulfonamides in VF-CWs. Sulfonamides addition increased bacterial alpha-diversity and changed microbial community structure. Moreover, antibiotics promoted antibiotic-resistant or -degrading bacteria. Bacillus, Geobacter and other seven genera were correlated with sulfonamides reduction under either aerobic or anaerobic condition. In summary, VF-CW is a suitable alternative for swine wastewater treatment, and biodegradation plays the key role in sulfonamides abatement. Main findings of the work. This was the first work to combine bacterial community analysis with microcosm experiments to uncover the major removal mechanism of sulfonamides in constructed wetlands.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Naderi Beni N, Snow DD, Berry ED, Mittelstet AR, Messer TL, Bartelt-Hunt S. Measuring the occurrence of antibiotics in surface water adjacent to cattle grazing areas using passive samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138296. [PMID: 32481204 DOI: 10.1016/j.scitotenv.2020.138296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of antibiotics and other pharmaceuticals are used in livestock production systems and residues passed to the environment, often unmetabolized, after use and excretion. Antibiotic residues may be transported from manure-treated soils via runoff and are also capable of reaching surface and groundwater systems through a variety of pathways. The occurrence and persistence of antibiotics in the environment is a concern due to the potential for ecological effects and proliferation of environmental antibiotic resistance in pathogenic organisms. In the present study, the occurrence and seasonal variation of 24 commonly-used veterinary antibiotics was evaluated in surface water adjacent to several livestock production systems using Polar Organic Chemical Integrative Samplers (POCIS). Uptake rates for all compounds, nine of which have not been previously reported, were measured in the laboratory to permit estimation of changes in the time-weighted average (TWA) antibiotic concentrations during exposure. The antibiotics detected in POCIS extracts included sulfadimethoxine, sulfamethoxazole, trimethoprim, sulfamerazine, sulfadiazine, lincomycin, erythromycin, erythromycin anhydro- and monensin. The maximum TWA concentration belonged to sulfadiazine (25 ng/L) in the August-September sampling period and coincided with the highest number of precipitation events. With the exception of monensin that showed an increase in concentration over the stream path, none of the detected antibiotics were prescribed to livestock at the facility. The detection of antibiotics not prescribed by the facility may be attributable to the environmental persistence of previously used antibiotics, transfer by wind from other nearby livestock production sites or industrial uses, and/or the natural production of some antibiotics.
Collapse
Affiliation(s)
- Nasrin Naderi Beni
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-6105, USA
| | - Daniel D Snow
- Water Sciences Laboratory and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0844, USA
| | - Elaine D Berry
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, NE 68933-0166, USA
| | - Aaron R Mittelstet
- School of Natural Resources, East Campus, University of Nebraska-Lincoln, 101 Hardin Hall, Lincoln, NE 68583-0961, USA
| | - Tiffany L Messer
- School of Natural Resources, East Campus, University of Nebraska-Lincoln, 101 Hardin Hall, Lincoln, NE 68583-0961, USA; Biological Systems Engineering Department, East Campus, University of Nebraska-Lincoln, 223 L.W. Chase Hall, P.O. Box 830726, Lincoln, NE 68583-0726, USA
| | - Shannon Bartelt-Hunt
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-6105, USA.
| |
Collapse
|
21
|
Wahla AQ, Anwar S, Mueller JA, Arslan M, Iqbal S. Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121493. [PMID: 32081488 DOI: 10.1016/j.jhazmat.2019.121493] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Metribuzin (MB) is a triazinone herbicide used for the eradication of weeds in agriculture. Presence of its residues in agricultural soil can potentially harm the establishment of subsequent crops and structure of soil microbial populations. In this study, remediation potential of an MB degrading bacterial consortium MB3R immobilized on biochar was evaluated in potato vegetated soil. In potato vegetated soil augmented with MB3R alone and MB3R immobilized on biochar, 82 and 96% MB degradation was recorded respectively as compared to only 29.3% in un-augmented soil. Kinetic parameters revealed that MB3R immobilized biochar is highly proficient as indicated by significant increase in the rate of biodegradation and decrease in half-life of MB. Enhanced plant growth was observed when augmented with bacterial consortium either alone or immobilized on biochar. Presence of herbicide negatively affected the soil bacterial community structure. However, MB3R immobilized on biochar proved to be helpful for restoration of soil bacterial community structure affected by MB. This is the very first report that reveals improved remediation of contaminated soil and restoration of soil bacterial populations by use of the MB degrading bacterial consortium immobilized on biochar.
Collapse
Affiliation(s)
- Abdul Qadeer Wahla
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Samina Anwar
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Jochen A Mueller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, Germany
| | - Muhammad Arslan
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, Germany
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
| |
Collapse
|
22
|
Sanz-Prat A, Greskowiak J, Burke V, Rivera Villarreyes CA, Krause J, Monninkhoff B, Sperlich A, Schimmelpfennig S, Duennbier U, Massmann G. A model-based analysis of the reactive transport behaviour of 37 trace organic compounds during field-scale bank filtration. WATER RESEARCH 2020; 173:115523. [PMID: 32044593 DOI: 10.1016/j.watres.2020.115523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Though bank filtration diminishes the loads of many trace organic compounds (TOrCs) present in the source water, still there is a wide uncertainty on the influence of local environmental conditions on biodegradation processes. This research addresses the fate and transport behaviour of 37 trace organic compounds at a bank filtration site in Germany over a relatively long-time span of six years. Using two-dimensional heat and reactive transport modelling in FEFLOW, TOrCs are classified according to their occurrence in bank filtration wells with a residence time of up to 4 months. We identify 12 persistent compounds, 20 reactive compounds and 5 transformation products formed during aquifer passage. Estimates of first-order biodegradation rate constants are given for six reactive compounds. Minimum biodegradation rate constants (i.e. maximum half-lives) are approximated for eight compounds only present in the surface water. For some compounds, a simple first-order degradation model did not yield satisfactory results and the behaviour appears to be more complex. Processes like sorption, redox- and/or temperature-dependent biodegradation and temperature-dependent desorption are suspected but incorporating these into the model was beyond the scope of this paper that provides an overview for many compounds. Results highlight the ability of the sub-surface to improve the water quality during bank filtration, yet at the same time show the persistence of several compounds in the aquifer.
Collapse
Affiliation(s)
- Alicia Sanz-Prat
- Carl von Ossietzky University of Oldenburg, Institute for Biology and Environmental Sciences, Working Group Hydrogeology and Landscape Hydrology, D26111, Oldenburg, Germany.
| | - Janek Greskowiak
- Carl von Ossietzky University of Oldenburg, Institute for Biology and Environmental Sciences, Working Group Hydrogeology and Landscape Hydrology, D26111, Oldenburg, Germany
| | - Victoria Burke
- Carl von Ossietzky University of Oldenburg, Institute for Biology and Environmental Sciences, Working Group Hydrogeology and Landscape Hydrology, D26111, Oldenburg, Germany
| | | | - Julia Krause
- DHI WASY GmbH, Volmerstraße 8, 12489, Berlin, Germany
| | | | | | | | - Uwe Duennbier
- Berliner Wasserbetriebe, Neue Jüdenstraße 1, 10179, Berlin, Germany
| | - Gudrun Massmann
- Carl von Ossietzky University of Oldenburg, Institute for Biology and Environmental Sciences, Working Group Hydrogeology and Landscape Hydrology, D26111, Oldenburg, Germany
| |
Collapse
|
23
|
Lu J, Wang T, Zhou Y, Cui C, Ao Z, Zhou Y. Dramatic enhancement effects of l-cysteine on the degradation of sulfadiazine in Fe 3+/CaO 2 system. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121133. [PMID: 31536866 DOI: 10.1016/j.jhazmat.2019.121133] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Excessive sulfonamides accumulated in soil and groundwater seriously menace the ecological environment and human health. The performance of a Fenton-like system applying Fe3+ and calcium peroxide (CaO2) in the presence of l-cysteine(l-cys) for sulfadiazine (SDZ) degradation was investigated. Compared with other chelating agents such as citric acid, butyric acid and Ethylenediaminetetraacetic acid, l-cys could effectively promote the SDZ removal in Fe3+/CaO2 system. With the addition of 0.5 mM l-cys, the SDZ degradation increased from 2.14% to 66.53% in 60 min. High concentration of HCO3- inhibited the degradation of SDZ while slightly negative effects on SDZ degradation were observed in the presence of Cl- or humic acid (HA) in l-cys/Fe3+/CaO2 system. Electron paramagnetic resonance (EPR) analysis and radicals scavenge tests affirmed the generation of OH and O2- in l-cys/Fe3+/CaO2 system. Possible degradation pathway of SDZ was speculated and the toxicity of SDZ intermediates was further evaluated. l-cys could enhance the reduction of Fe3+ to Fe2+ and reduced the Fe3+ precipitation due to the l-cys could form stable complexes with Fe3+. l-cys/Fe3+/CaO2 system exhibited high mineralization ability. Overall, these results indicated that l-cys is a promising chelating agent for sulfadiazine wastewater treatment.
Collapse
Affiliation(s)
- Jian Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Tenghao Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai, 200092, China
| | - Zhimin Ao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai, 200092, China.
| |
Collapse
|
24
|
Thyroid-Disrupting Activities of Groundwater from a Riverbank Filtration System in Wuchang City, China: Seasonal Distribution and Human Health Risk Assessment. J CHEM-NY 2020. [DOI: 10.1155/2020/2437082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recombinant thyroid hormone receptor (TR) gene yeast assay was used to evaluate thyroid disruption caused by groundwater from the riverbank filtration (RBF) system in Wuchang City, China. To investigate seasonal fluctuations, groundwater was collected during three seasons. Although no TR agonistic activity was found, many water samples exhibited TR antagonistic activity. The bioassay-derived amiodarone hydrochloride (AH) equivalents ranged from 2.99 to 274.40 μg/L. Water samples collected from the riverbank filtration system during the dry season had higher TR antagonistic activity. All samples presented adverse 3,3′,5-triiodo-L-thyronine (T3) equivalent levels, ranging from −2.00 to −2.12 μg/kg. Following exposure to water samples with substantial TR antagonist activity, predicted hormonal changes in humans of different gender and age ranged from 0.65 to 1.48 μg/kg of T3, being 47% to 231% of normal. No obvious difference was found between genders or among age groups. Overall, the results revealed that the RBF system could remove the thyroid-disrupting chemicals in the river water to some extent. Considering the varying degrees of risk to human health, further treatment is needed to remove the potential thyroid-disrupting chemicals in pumping water after riverbank filtration to ensure drinking water safety.
Collapse
|