1
|
Huo J, Song B, Lin X, Riaz M, Zhao X, Liu S, She Q. Ecological characteristics of sugar beet plant and rhizosphere soil in response to high boron stress: A study of the remediation potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120655. [PMID: 38513589 DOI: 10.1016/j.jenvman.2024.120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.
Collapse
Affiliation(s)
- Jialu Huo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Xiaochen Lin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaoyu Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shangxuan Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Qingqing She
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
2
|
Yu Y, Zeng H, Wang L, Wang R, Zhou H, Zhong L, Zeng J, Chen Y, Tan Z. Modeling nitrogen removal performance based on novel microbial activity indicators in WWTP by machine learning and biological interpretation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120256. [PMID: 38341909 DOI: 10.1016/j.jenvman.2024.120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Modeling the pollutant removal performance of wastewater treatment plants (WWTPs) plays a crucial role in regulating their operation, mitigating effluent anomalies and reducing operating costs. Pollutants removal in WWTPs is closely related to microbial activity. However, there is extremely limited knowledge on the models accurately characterizing pollutants removal performance by microbial activity indicators. This study proposed a novel specific oxygen uptake rate (SOURATP) with adenosine triphosphate (ATP) as biomass. Firstly, it was found that SOURATP and total nitrogen (TN) removal rate showed similar fluctuated trends, and their correlation was stronger than that of TN removal rate and common SOURMLSS with mixed liquor suspended solids (MLSS) as biomass. Then, support vector regressor (SVR), K-nearest neighbor regressor (KNR), linear regressor (LR), and random forest (RF) models were developed to predict TN removal rate only with microbial activity as features. Models utilizing the novel SOURATP resulted in better performance than those based on SOURMLSS. A model fusion (MF) algorithm based on the above four models was proposed to enhance the accuracy with lower root mean square error (RMSE) of 2.25 mg/L/h and explained 75% of the variation in the test data with SOURATP as features as opposed to other base learners. Furthermore, the interpretation of predictive results was explored through microbial community structure and metabolic pathway. Strong correlations were found between SOURATP and the proportion of nitrifiers in aerobic pool, as well as between heterotrophic bacteria respiratory activity (SOURATP_HB) and the proportion of denitrifies in anoxic pool. SOURATP also displayed consistent positive responses with most key enzymes in Embden-Meyerhof-Parnas pathway (EMP), tricarboxylic acid cycle (TCA) and oxidative phosphorylation cycle. In this study, SOURATP provides a reliable indication of the composition and metabolic activity of nitrogen removal bacteria, revealing the potential reasons underlying the accurate predictive result of nitrogen removal rates based on novel microbial activity indicators. This study offers new insights for the prediction and further optimization operation of WWTPs from the perspective of microbial activity regulation.
Collapse
Affiliation(s)
- Yadan Yu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liyun Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Rui Wang
- China MCC5 Group Corp.Ltd., Chengdu, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liang Zhong
- Jintang Haitian Water Co., Chengdu, 610400, China
| | - Jun Zeng
- Jintang Haitian Water Co., Chengdu, 610400, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
3
|
Fu Q, Yang Y, Zhao M, Zhang L, Shan S. Enhancing the ability of two kinds of oil-degrading bacteria to treat oily sludge by optimising the growth conditions using a response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1859-1875. [PMID: 36315081 DOI: 10.2166/wst.2022.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biosurfactant are Surfactants produced by certain microorganisms. These biosurfactants increase the biodegradability of insoluble pollutants. In this study, the fermentation products of Pseudomonas stutzeri Lh-42 (PS) and Rhodococcus sp. PR-1 (RD) were studied by Oil spreading method, emulsifying activity and infrared spectrum analysis. It was proved that these fermentation products were biosurfactant. And then the fermentation conditions of PS, RD were optimised by Placket-Burman (PB) design, hill-climbing experiment and response surface methodology (RSM). N source and liquid loading were significant factors in the fermentation of PS, while C source and speed were significant factors in the fermentation of RD. The surface tension was found to be as low as 39.53 ± 0.25 mN/m for the fermentation conditions of PS with an N source of 4.62 ± 0.41 g and a liquid loading of 28.4 ± 0.3%. The surface tension was 40.70 ± 0.47 mN/m for the incubation conditions of RD with a C source of 26.94 ± 0.62 g and a rotational speed of 210 r/min. Finally, the experimental results for the degradation of oily sludge showed that the degradation rate of oily sludge was improved when the fermentation conditions were optimised. The results of the infrared spectroscopy analysis showed that the organic matter content of the oily sludge treated with PS bacteria was significantly reduced after the optimised fermentation. This study provides a theoretical reference for further use of these bacteria to produce biosurfactants to treat organic matter.
Collapse
Affiliation(s)
- Qiang Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China E-mail:
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China E-mail: ; Key Laboratory of Biometallurgy, Ministry of Education, 932 South Lushan Rd., Changsha, Hunan 410083, China
| | - Mengshi Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China E-mail:
| | - Li Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China E-mail:
| | - Si Shan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China E-mail:
| |
Collapse
|
4
|
You Y, Huang S, He Z. Activation of persulfate for degradation of sodium dodecyl sulfate by a hybrid catalyst hematite/cuprous sulfide with enhanced Fe III/Fe II redox cycling. CHEMOSPHERE 2022; 295:133839. [PMID: 35122824 DOI: 10.1016/j.chemosphere.2022.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Surfactants are recalcitrant compounds that require advanced treatment for their degradation. Heterogeneous advanced oxidation processes (AOPs) using iron-based catalysts can be a promising method for surfactant degradation. The acceleration of the FeIII/FeII redox cycling is the key to enhance the catalytic degradation. Herein, a hybrid catalyst composed of α-Fe2O3 and Cu2S was synthesized to improve the reduction of FeIII in a heterogeneous persulfate-AOP system. The results of XRD, Raman and TEM demonstrated the successful preparation of the hybrid catalyst. Because of the optimized FeII regeneration, the AOP containing the catalyst FC75 achieved 100.0% removal of sodium dodecyl sulfate (SDS) in a neutral aquatic environment, significantly higher than 22.9 ± 2.4% with pure α-Fe2O3 or 39.6 ± 2.5% with pure Cu2S. The catalyst FC75 demonstrated effective SDS removal in the recycling test (82.7 ± 7.0% after six recycling test) and in actual wastewater (84.4 ± 4.5%). The regeneration of FeII was confirmed by the increased proportion of FeII from 39.5% in the fresh catalyst to 42.6% in the used catalyst. The main active species was revealed to be sulfate radicals under an acidic condition and shifted to hydroxyl radicals under a basic condition. In the hybrid catalyst, α-Fe2O3 provided FeII to activate persulfate to radicals, with an oxidation product of FeIII, which was then reduced to FeII by CuI provided by Cu2S, coupling with the oxidation of CuI to CuII. The S element in Cu2S could directly or indirectly facilitate the FeIII/FeII redox cycling as an electron donor. Those results have demonstrated that the developed hybrid catalyst is able to promote FeII regeneration for effective SDS removal.
Collapse
Affiliation(s)
- Yingying You
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
5
|
Li J, Zheng T, Liu C. Soil acidification enhancing the growth and metabolism inhibition of PFOS and Cr(VI) to bacteria involving oxidative stress and cell permeability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116650. [PMID: 33581635 DOI: 10.1016/j.envpol.2021.116650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Soil acidification is causing more and more attention, not only because of the harm of acidification itself, but also the greater harm to bacteria brought by some pollutants under acidic condition. Therefore, the toxicities of two typical soil pollutants (perfluorooctane sulfonate (PFOS) and chromium (Cr(VI)) to growth and metabolisms of soil bacteria (Bacillus subtilis as modol) were investigated. Under acidic condition of pH = 5, Cr(VI), PFOS and PFOS + Cr(VI) show stronge inhibition to bacteria growth up to 24.3%, 42.3%, 41.6%, respectively, and this inhibition was about 2-3 times of that at pH = 7. Moreover, acid stress reduces the metabolism of bacteria, while PFOS and Cr(VI) pollution futher strengthens this metabolic inhibition involving oxidative stress and cell permeability. The activities of dehydrogenase (DHA) and electron transport system (ETS) at pH = 5 exposed to Cr(VI), PFOS and combined PFOS + Cr(VI) was 21.5%, 16.9%, 23.2% and 8.9%, 32.2%, 19.1% lower than the control, respectively. However, the relative activity of DHA and ETS at pH = 7 are 5-8 and 2-13 times of that at pH = 5, respectively. Isoelectric point, cell surface hydrophobicity and molecular simulation analysis show that the corresponding mechanism is that acidic conditions enhance the interaction between bacteria and PFOS/Cr(VI) through hydrogen bonding, hydrophobic and electrostatic interactions. The results can guide the remediation of acid soil pollution, and provide a reference for the combined toxicity evaluation of heavy metals and micro-pollutants in acid soil.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Tongtong Zheng
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China.
| |
Collapse
|
6
|
Maertens L, Matroule JY, Van Houdt R. Characteristics of the copper-induced viable-but-non-culturable state in bacteria. World J Microbiol Biotechnol 2021; 37:37. [PMID: 33544256 PMCID: PMC7864824 DOI: 10.1007/s11274-021-03006-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
The antimicrobial applications of copper (Cu) are exploited in several industries, such as agriculture and healthcare settings. While Cu is capable of efficiently killing microorganisms, sub-lethal doses can induce a viable-but-non-culturable (VBNC) state in bacteria of many distinct clades. VBNC cells cannot be detected by standard culture-based detection methods, and can become a threat to plants and animals as they often retain virulent traits upon resuscitation. Here we discuss the putative mechanisms of the Cu-induced VBNC state. Common observations in Cu-induced VBNC cells include a cellular response to reactive oxygen species, the exhaustion of energy reserves, and a reconfiguration of the proteome. While showing partial overlap with other VBNC state-inducing stressors, these changes seem to be part of an adaptive response to Cu toxicity. Furthermore, we argue that Cu resistance mechanisms such as P-type ATPases and multicopper oxidases may ward off entry into the VBNC state to some extent. The spread of these mechanisms across multi-species populations could increase population-level resistance to Cu antimicrobials. As Cu resistance mechanisms are often co-selected with antibiotic resistance mechanisms, this threat is exacerbated.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
| |
Collapse
|
7
|
Lin X, Su C, Deng X, Wu S, Tang L, Li X, Liu J, Huang X. Influence of polyether sulfone microplastics and bisphenol A on anaerobic granular sludge: Performance evaluation and microbial community characterization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111318. [PMID: 32979806 DOI: 10.1016/j.ecoenv.2020.111318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The retention of polyether sulfone (PES) and bisphenol A (BPA) in wastewater has received extensive attention. The effects of PES and BPA on the removal of organic matter by anaerobic granular sludge were investigated. We also analyzed the changes in the electron transport system and the effects on the composition of extracellular polymeric substances (EPS), as well as alternations of the microbial community in the anaerobic granular sludge. In the experimental groups which received BPA, the removal of the chemical oxygen demand (COD) were significantly suppressed, which an average removal efficiency of less than 65%, 30% lower than that of the control group. In the loosely-bound EPS (LB-EPS) excitation-emission matrix (EEM) spectra, the absorption peak of tryptophan disappeared when the BPA pollutants was added, which it was present in the control group without added pollutants. The addition of PES and BPA also affected protease, acetate kinase, and coenzyme F420 activities in the anaerobic granular sludge. Especially, the coenzyme F420 reduced from 0.0045 to 0.0017 μmol/L in the presence of PES and BPA. The relative abundance of Spirochaetes decreased in the presence of PES and BPA, while the relative abundance of Bacteroidetes increased from 12.98% to 22.87%. At the genus level, in the presence of PES and BPA, the relative abundance of Acinetobacter increased from 2.20% to 9.64% and Hydrogenophaga decreased sharply from 15.58% to 0.12%.
Collapse
Affiliation(s)
- Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Jie Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
8
|
Li H, Wu S, Yang C. Performance and Biomass Characteristics of SB Rs Treating High-Salinity Wastewater at Presence of Anionic Surfactants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082689. [PMID: 32295163 PMCID: PMC7216276 DOI: 10.3390/ijerph17082689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS), as two anionic surfactants, have diffused into environments such as surface water and ground water due to extensive and improper use. The effects on the removal performance and microbial community of sequencing batch reactors (SBRs) need to be investigated in the treatment of saline wastewater containing 20 g/L NaCl. The presence of SDS and SDBS could decrease the removal efficiencies of ammonia nitrogen and total phosphorus, and the effect of SDS was more significant. The effect of surfactants on the removal mainly occurred during the aeration phase. Adding SDS and SDBS can reduce the content of extracellular polymeric substances (EPS). In addition, SDS and SDBS also can reduce the inhibition of high salinity on sludge activity. A total of 16 s of rRNA sequencing analysis showed that the addition of surfactants reduced the diversity of microbial communities; besides, the relative abundance value of the dominant population Proteobacteria increased from 91.66% to 97.12% and 93.48% when SDS and SDBS were added into the system, respectively.
Collapse
Affiliation(s)
- Huiru Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; (H.L.); (S.W.)
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China
- Correspondence:
| |
Collapse
|