1
|
Yu Y, Li Y, Sun B, Cui J, Liu H, Sun Y, Xu Q, Boisse N, Voelker F, Matioszek D, Favero C, Kieffer J, Li Y, Lu J, Li H, Bao M. Characterization and degradation mechanism of a newly isolated hydrolyzed polyacrylamide-degrading bacterium Alcaligenes faecalis EPDB-5 from the oilfield sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125124. [PMID: 39414063 DOI: 10.1016/j.envpol.2024.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Hydrolyzed polyacrylamide (HPAM) is posing serious threats to ecosystems. However, biodegradation is an effective method to remove HPAM owing to its low cost and environmental friendliness. In this study, Alcaligenes faecalis EPDB-5 was isolated as a highly efficient HPAM degrading strain from sludge contaminated with polymerized produced water from Daqing oilfield. Under the optimal conditions, the strain EPDB-5 demonstrated an impressive HPAM degradation rate of 86.05%, the total nitrogen (TN) removal of 71.96% and chemical oxygen demand (COD) removal of 67.98%. Meanwhile, it can maintain a stable degradation rate higher than 75% under different pH and temperature conditions. 27 genes that play a key role in HPAM degradation were annotated by metagenomics sequencing. The key genes were involved in multiple KEGG pathways, including biofilm formation, biosynthesis secondary metabolites, and metabolic pathways. SEM, GPC, and FTIR analyses revealed that the structure of HPAM after biodegradation showed pores, a significant decrease in molecular weight, -NH2 detachment, and carbon chain breakage. Particularly, we propose a possible mechanism of biofilm formation - HPAM degradation - biofilm disappearance and reorganization. Moreover, the degradation rate of strain EPDB-5 on real wastewater containing HPAM was 29.97% in only three days. This work expands our knowledge boundary about the HPAM degradation mechanism at the functional gene level, and supports the potential of strain EPDB-5 as a novel auxiliary microbial resource for the practical application of HPAM.
Collapse
Affiliation(s)
- Yaqiu Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yanshuo Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Bingjian Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinbo Cui
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yuxiang Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qinglin Xu
- SNF (China) Flocculants Ltd, Taixing, 225400, China
| | | | | | | | | | | | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Song T, Zhang F, Chen Q, Tao Y, Chang W, Xia W, Ding W, Jin J. Acceleration of the biodegradation of cationic polyacrylamide by the coupling effect of thermophilic microorganisms and high temperature in hyperthermophilic composting. Bioprocess Biosyst Eng 2024; 47:403-415. [PMID: 38421394 DOI: 10.1007/s00449-024-02972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
As a flocculant of sewage sludge, cationic polyacrylamide (CPAM) enters the environment with sludge and exists for a long time, posing serious threats to the environment. Due to the environmental friendliness and high efficiency in the process of organic solid waste treatment, hyperthermophilic composting (HTC) has received increasing attention. However, it is still unclear whether the HTC process can effectively remove CPAM from sludge. In this study, the effects of HTC and conventional thermophilic composting (CTC) on CPAM in sludge were compared and analyzed. At the end of HTC and CTC, the concentrations of CPAM were 278.96 mg kg-1 and 533.89 mg kg-1, respectively, and the removal rates were 72.17% and 46.61%, respectively. The coupling effect of thermophilic microorganisms and high temperature improved the efficiency of HTC and accelerated the biodegradation of CPAM. The diversity and composition of microbial community changed dramatically during HTC. Geobacillus, Thermobispora, Pseudomonas, Brevundimonas, and Bacillus were the dominant bacteria responsible for the high HTC efficiency. To our knowledge, this is the first study in which CPAM-containing sludge is treated using HTC. The ideal performance and the presence of key microorganisms revealed that HTC is feasible for the treatment of CPAM-containing sludge.
Collapse
Affiliation(s)
- Tianwen Song
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Fan Zhang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Qu Chen
- Medical College, Qingdao Binhai University, Qingdao, 266555, China
| | - Yinglu Tao
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wei Chang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wenxiang Xia
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Wande Ding
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jiafeng Jin
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China
| |
Collapse
|
3
|
Wang Z, Li K, Gui X, Li Z. Acidovorax PSJ13, a novel, efficient polyacrylamide-degrading bacterium by cleaving the main carbon chain skeleton without the production of acrylamide. Biodegradation 2023; 34:581-595. [PMID: 37395852 DOI: 10.1007/s10532-023-10036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
Given the environmental challenge caused by the wide use of polyacrylamide (PAM), an environmental-friendly treatment method is required. This study demonstrates the role of Acidovorax sp. strain PSJ13 isolated from dewatered sludge in efficiently degrading PAM. To be specific, the strain PSJ13 can degrade 51.67% of PAM in 96 h (2.39 mg/(L h)) at 35 °C, pH 7.5 and 5% inoculation amount. Besides, scanning electron microscope, X-ray photoelectron spectroscopy, liquid chromatography-mass spectrometry and high-performance liquid chromatography were employed to analyze samples, and the nitrogen present in the degradation products was investigated. The results showed that the degradation of PAM by PSJ13 started from the side chain and then mainly the -C-C- main chain, which produced no acrylamide monomers. As the first study to report the role of Acidovorax in efficiently degrading PAM, this work may provide a solution for industries that require PAM management.
Collapse
Affiliation(s)
- Zhengjiang Wang
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Kaili Li
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4067, Australia
| | - Xuwei Gui
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zhenlun Li
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
4
|
Yan H, Xu L, Su J, Wei H, Li X, Cao S. Biotransformation of sulfamethoxazole by newly isolated surfactant-producing strain Proteus mirabilis sp. ZXY4: Removal efficiency, pathways, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 385:129422. [PMID: 37406832 DOI: 10.1016/j.biortech.2023.129422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In this study, the SMX degrading strain Proteus mirabilis sp. ZXY4 with surfactant manufacturing potential was isolated from sludge utilizing blood agar and CTAB agar plate. FTIR analysis indicated that the biosurfactant generated by strain ZXY4 was glycolipid. 3D-EEM demonstrated that SMX biodegradation was strongly connected to biosurfactants, the synergistic effect of biodegradation and biosurfactant made strain ZXY4 have excellent SMX degradation performance. Under the optimal conditions of inoculation dosage of 15%, temperature of 30 ℃, pH of 7 and initial SMX concentration of 5 mg L-1, strain ZXY4 could completely degrade SMX within 24 h. SMX biodegrades at low concentrations (less than5 mg L-1) followed by the zero-order kinetic model, high concentration (>5 mg L-1) is more consistent with the first-order kinetic model. LC-MS analysis revealed 14 SMX degradation intermediates, and five potential biodegradation mechanisms were postulated. The findings provide new insights into the biodegradation of SMX.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ling Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Wei D, Zhang X, Li C, Ma Z, Zhao M, Wei L. Efficiency and microbial community characteristics of strong alkali ASP flooding produced water treated by composite biofilm system. Front Microbiol 2023; 14:1166907. [PMID: 37303803 PMCID: PMC10247963 DOI: 10.3389/fmicb.2023.1166907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Strong alkali alkali-surfactant-polymer (ASP) flooding produced water is a by-product of oil recovery, and it is a stable system composed of petroleum, polyacrylamide, surfactant, and inorganic salts. Efficient, green, and safe ASP produced water treatment technology is essential for oilfield exploitation and environmental protection. In this study, an anaerobic/anoxic/moving bed biofilm reactor with a microfiltration membrane was established and assessed for the real strong alkali ASP flooding produced water (pH 10.1-10.4) treatment. The results show that the average removal rates of COD, petroleum, suspended solids, polymers and surfactants in this process are 57, 99, 66, 40, and 44%, respectively. GC-MS results show that most of the organic compounds such as alkanes and olefins in the strong alkali ASP produced water are degraded. Microfiltration membrane can significantly improve the efficiency and stability of sewage treatment system. Paracoccus (AN), Synergistaceae (ANO) and Trichococcus (MBBR) are the main microorganisms involved in the degradation of pollutants. This study reveals the potential and adaptability of composite biofilm system in treating the produced water of strong alkali ASP produced water.
Collapse
Affiliation(s)
- Dong Wei
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinxin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Zhongting Ma
- PetroChina Karamay Petrochemical Co., Ltd., Karamay, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Tan Z, Yang X, Liu Y, Chen L, Xu H, Li Y, Gong B. The capability of chloramphenicol biotransformation of Klebsiella sp. YB1 under cadmium stress and its genome analysis. CHEMOSPHERE 2023; 313:137375. [PMID: 36435315 DOI: 10.1016/j.chemosphere.2022.137375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Co-contamination by antibiotics and heavy metal is common in the environment, however, there is scarce information about antibiotics biodegradation under heavy metals stress. In this study, Klebsiella sp. Strain YB1 was isolated which is capable of biodegrading chloramphenicol (CAP) with a biodegradation efficiency of 22.41% at an initial CAP of 10 mg L-1 within 2 days. CAP biodegradation which fitted well with the first-order kinetics. YB1 still degrades CAP under Cd stress, however 10 mg L-1 Cd inhibited CAP biodegradation by 15.1%. Biotransformation pathways remained the same under Cd stress, but two new products (Cmpd 19 and Cmpd 20) were identified. Five parallel metabolism pathways of CAP were proposed with/without Cd stress, including one novel pathway (pathway 5) that has not been reported before. In pathway 5, the initial reaction was oxidation of CAP by disruption of C-C bond at the side chain of C1 and C2 with the formation of 4-nitrobenzyl alcohol and CY7, then these intermediates were oxidized into p-nitrobenzoic acid and CY1, respectively. CAP acetyltransferase and nitroreductase and 2,3/4,5-dioxygenase may play an important role in CAP biodegradation through genome analysis and prediction. This study deepens our understanding of mechanism of antibiotic degradation under heavy metal stress in the environment.
Collapse
Affiliation(s)
- Zewen Tan
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiuyue Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yiling Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lian Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Huijuan Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Beini Gong
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
7
|
Mohammadi SA, Najafi H, Zolgharnian S, Sharifian S, Asasian-Kolur N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157026. [PMID: 35772531 DOI: 10.1016/j.scitotenv.2022.157026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Enzyme-based bioremediation is a simple, cost-effective, and environmentally friendly method for isolating and removing a wide range of environmental pollutants. This study is a comprehensive review of recent studies on the oxidation of pollutants by biological oxidation methods, performed individually or in combination with other methods. The main bio-oxidants capable of removing all types of pollutants, such as organic and inorganic molecules, from fungi, bacteria, algae, and plants, and different types of enzymes, as well as the removal mechanisms, were investigated. The use of mediators and modification methods to improve the performance of microorganisms and their resistance under harsh real wastewater conditions was discussed, and numerous case studies were presented and compared. The advantages and disadvantages of conventional and novel immobilization methods, and the development of enzyme engineering to adjust the content and properties of the desired enzymes, were also explained. The optimal operating parameters such as temperature and pH, which usually lead to the best performance, were presented. A detailed overview of the different combination processes was also given, including bio-oxidation in coincident or consecutive combination with adsorption, advanced oxidation processes, and membrane separation. One of the most important issues that this study has addressed is the removal of both organic and inorganic contaminants, taking into account the actual wastewaters and the economic aspect.
Collapse
Affiliation(s)
- Seyed Amin Mohammadi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Hanieh Najafi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Sheida Zolgharnian
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran.
| |
Collapse
|
8
|
Al-Kindi S, Al-Bahry S, Al-Wahaibi Y, Taura U, Joshi S. Partially hydrolyzed polyacrylamide: enhanced oil recovery applications, oil-field produced water pollution, and possible solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:875. [PMID: 36227428 PMCID: PMC9558033 DOI: 10.1007/s10661-022-10569-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/19/2022] [Indexed: 05/27/2023]
Abstract
Polymers, such as partially hydrolyzed polyacrylamide (HPAM), are widely used in oil fields to enhance or improve the recovery of crude oil from the reservoirs. It works by increasing the viscosity of the injected water, thus improving its mobility and oil recovery. However, during such enhanced oil recovery (EOR) operations, it also produces a huge quantity of water alongside oil. Depending on the age and the stage of the oil reserve, the oil field produces ~ 7-10 times more water than oil. Such water contains various types of toxic components, such as traces of crude oil, heavy metals, and different types of chemicals (used during EOR operations such as HPAM). Thus, a huge quantity of HPAM containing produced water generated worldwide requires proper treatment and usage. The possible toxicity of HPAM is still ambiguous, but its natural decomposition product, acrylamide, threatens humans' health and ecological environments. Therefore, the main challenge is the removal or degradation of HPAM in an environmentally safe manner from the produced water before proper disposal. Several chemical and thermal techniques are employed for the removal of HPAM, but they are not so environmentally friendly and somewhat expensive. Among different types of treatments, biodegradation with the aid of individual or mixed microbes (as biofilms) is touted to be an efficient and environmentally friendly way to solve the problem without harmful side effects. Many researchers have explored and reported the potential of such bioremediation technology with a variable removal efficiency of HPAM from the oil field produced water, both in lab scale and field scale studies. The current review is in line with United Nations Sustainability Goals, related to water security-UNSDG 6. It highlights the scale of such HPAM-based EOR applications, the challenge of produced water treatment, current possible solutions, and future possibilities to reuse such treated water sources for other applications.
Collapse
Affiliation(s)
- Shatha Al-Kindi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Saif Al-Bahry
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
- Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Yahya Al-Wahaibi
- A'Sharqiyah University, Postal Code: 400, P.O. Box 42, Ibra, Oman
| | - Usman Taura
- Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Sanket Joshi
- Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
9
|
Biodegradation of Polymers Used in Oil and Gas Operations: Towards Enzyme Biotechnology Development and Field Application. Polymers (Basel) 2022; 14:polym14091871. [PMID: 35567040 PMCID: PMC9100872 DOI: 10.3390/polym14091871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Linear and crosslinked polymers are commonly used in the oil and gas industry. Guar-derived polymers have been extensively utilized in hydraulic fracturing processes, and recently polyacrylamide and cellulose-based polymers have also found utility. As these polymers are used during various phases of the hydraulic fracturing process, they can accumulate at formation fracture faces, resulting in undesired filter cakes that impede oil and gas recovery. Although acids and chemical oxidizers are often added in the fracturing fluids to degrade or ‘break’ polymer filter cakes, the constant use of these chemicals can be hazardous and can result in formation damage and corrosion of infrastructure. Alternately, the use of enzymes is an attractive and environmentally friendly technology that can be used to treat polymer accumulations. While guar-linkage-specific enzyme breakers isolated from bacteria have been shown to successfully cleave guar-based polymers and decrease their molecular weight and viscosity at reservoir conditions, new enzymes that target a broader range of polymers currently used in hydraulic fracturing operations still require research and development for effective application. This review article describes the current state-of-knowledge on the mechanisms and enzymes involved in biodegradation of guar gum, polyacrylamide (and hydrolyzed polyacrylamide), and carboxymethyl cellulose polymers. In addition, advantages and challenges in the development and application of enzyme breaker technologies are discussed.
Collapse
|
10
|
Feng D, Shang Z, Xu P, Yue H, Li X. Electrochemical degradation of hydrolyzed polyacrylamide by a novel La-In co-doped PbO2 electrode: Electrode characterization, influencing factors and degradation pathway. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Braun O, Coquery C, Kieffer J, Blondel F, Favero C, Besset C, Mesnager J, Voelker F, Delorme C, Matioszek D. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules 2021; 27:42. [PMID: 35011281 PMCID: PMC8746853 DOI: 10.3390/molecules27010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the "green chemistry" concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dimitri Matioszek
- SNF SA, ZAC de Milieux, 42160 Andrézieux-Bouthéon, France; (O.B.); (C.C.); (J.K.); (F.B.); (C.F.); (C.B.); (J.M.); (F.V.); (C.D.)
| |
Collapse
|
12
|
Zhang H, Li X, An Z, Liu Z, Tang C, Zhao X. Treatment of polyacrylamide-polluted wastewater using a revolving algae biofilm reactor: Pollutant removal performance and microbial community characterization. BIORESOURCE TECHNOLOGY 2021; 332:125132. [PMID: 33848818 DOI: 10.1016/j.biortech.2021.125132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Industries such as oil mining face challenges in the treatment of polyacrylamide (PAM)-containing wastewater produced during petroleum extraction. The feasibility of using revolving algae biofilm (RAB) reactors to treat PAM-contaminated wastewater for simultaneous removal of carbon and nitrogen was evaluated. The presence or absence of external nitrogen sources had a significant impact on the treatment effect of the RAB system. With the additional N source, the PAM, COD, TOC, and TN removal rates were 64.1 ± 2.0, 58 ± 1.5, 34.5 ± 1.5, and 85 ± 6.0%, respectively. High-throughput sequencing showed that the biofilms on RAB reactors contained a variety of bacteria, cyanobacteria, and green algae, degrading PAM through various mechanisms. The results of infrared spectroscopy analysis indicate that the product of these processes was carboxylic acid. Based on these results, it was concluded that RAB systems can be effectively applied to the treatment of polymer-containing wastewater.
Collapse
Affiliation(s)
- Huichao Zhang
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xin Li
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Zhongyi An
- School of Civil Engineering, Yantai University, Yantai 264000, China.
| | - Zhiwei Liu
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Chunxiao Tang
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xiaodong Zhao
- School of Marine Science, Yantai University, Yantai 264000, China
| |
Collapse
|
13
|
Jeyasundar PGSA, Ali A, Azeem M, Li Y, Guo D, Sikdar A, Abdelrahman H, Kwon E, Antoniadis V, Mani VM, Shaheen SM, Rinklebe J, Zhang Z. Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116789. [PMID: 33640810 DOI: 10.1016/j.envpol.2021.116789] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 05/19/2023]
Abstract
Microorganism-assisted phytoremediation is being developed as an efficient green approach for management of toxic metals contaminated soils and mitigating the potential human health risk. The capability of plant growth promoting Actinobacteria (Streptomyces pactum Act12 - ACT) and Firmicutes (Bacillus subtilis and Bacillus licheniformis - BC) in mono- and co-applications (consortium) to improve soil properties and enhance phytoextraction of Cd, Cu, Pb, and Zn by Brassica juncea (L.) Czern. was studied here for the first time in both incubation and pot experiments. The predominant microbial taxa were Proteobacteria, Actinobacteria and Bacteroidetes, which are important lineages for maintaining soil ecological activities. The consortium improved the levels of alkaline phosphatase, β-D glucosidase, dehydrogenase, sucrase and urease (up to 33%) as compared to the control. The bacterial inoculum also triggered increases in plant fresh weight, pigments and antioxidants. The consortium application enhanced significantly the metals bioavailability (DTPA extractable) and mobilization (acid soluble fraction), relative to those in the unamended soil; therefore, significantly improved the metals uptake by roots and shoots. The phytoextraction indices indicated that B. juncea is an efficient accumulator of Cd and Zn. Overall, co-application of ACT and BC can be an effective solution for enhancing phytoremediation potential and thus reducing the potential human health risk from smelter-contaminated soil. Field studies may further credit the understanding of consortium interactions with soil and different plant systems in remediating multi-metal contaminated environments.
Collapse
Affiliation(s)
| | - Amjad Ali
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Azeem
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiman Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ashim Sikdar
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza, 12613 Egypt
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Vellingiri Manon Mani
- Department of Biotechnology, RathnavelSubramaniam College of Arts and Science, Coimbatore, 641402, India
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, South Korea.
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Wang A, Liu C, Ge X, Meng W, Pi Y, Liu C. Enhanced removal of Congo red dye from aqueous solution by surface modified activated carbon with bacteria. J Appl Microbiol 2021; 131:2270-2279. [PMID: 33825288 DOI: 10.1111/jam.15100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS The adsorption behaviour and mechanisms of the surface modified activated carbon with bacteria was evaluated. METHODS AND RESULTS 16S rRNA was employed to identify the hydrocarbon-degrading bacteria. The bacteria was characterized by TEM and electron microscope. The surface modified activated carbon with bacteria was characterized by SEM. The adsorption behaviour was tested by static adsorption and dynamic adsorption. CONCLUSION The adsorption efficiency of the modified activated carbon was high when pH was weak acidic, and the adsorption capacity increased with the increase of temperature ranging from 20 to 35°C. The adsorption capacity peaked at 234·6 mg g-1 at 25°C, which was sixfold higher than that of activated carbon. The pseudo-first-order kinetic can more accurately assess Congo red adsorption on the two adsorbents. The adsorption of Congo red by bacteria surface modified activated carbon fitted well with the Langmuir's model. The adsorption process was endothermic, and the biological floccules were formed during the adsorption. The physical adsorption is the main driving force. SIGNIFICANCE AND IMPACT OF THE STUDY The results indicate that the bacteria surface-modified activated carbon can be used effectively as an adsorbent to eliminate Congo red from aqueous solutions.
Collapse
Affiliation(s)
- A Wang
- School of Ocean, Yantai University, Yantai, China
| | - C Liu
- School of Ocean, Yantai University, Yantai, China
| | - X Ge
- School of Ocean, Yantai University, Yantai, China
| | - W Meng
- School of Ocean, Yantai University, Yantai, China
| | - Y Pi
- School of Ocean, Yantai University, Yantai, China
| | - C Liu
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
15
|
Song T, Li S, Yin Z, Bao M, Lu J, Li Y. Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116111. [PMID: 33290953 DOI: 10.1016/j.envpol.2020.116111] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Polymer flooding is one of the most important enhanced oil recovery techniques. However, a large amount of hydrolyzed polyacrylamide (HPAM)-containing wastewater is produced in the process of polymer flooding, and this poses a potential threat to the environment. In this study, the treatment of HPAM-containing wastewater was analyzed in an ozonic-anaerobic-aerobic multistage treatment process involving an ozone reactor (OR), an upflow anaerobic sludge blanket reactor (UASBR), and an aerobic biofilm reactor (ABR). At an HPAM concentration of 500 mg L-1 and an ozone dose of 25 g O3/g TOC, the HPAM removal rate reached 85.06%. With fracturing of the carbon chain, high-molecular-weight HPAM was degraded into low-molecular-weight compounds. Microbial communities in bioreactors were investigated via high-throughput sequencing, which revealed that norank_c_Bacteroidetes_vadinHA17, norank_f_Cytophagaceae, and Meiothermus were the dominant bacterial groups, and that Methanobacterium, norank_c_WCHA1-57, and Methanosaeta were the key archaeal genera. To the best of our knowledge, this is the first study in which HPAM-containing wastewater is treated using an ozonic-anaerobic-aerobic multistage treatment system. The ideal degradation performance and the presence of keystone microorganisms confirmed that the multistage treatment process is feasible for treatment of HPAM-containing wastewater.
Collapse
Affiliation(s)
- Tianwen Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China; College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Shanshan Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zichao Yin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; China Petrochemical Corporation (Sinopec Group), Beijing, 100728, China
| |
Collapse
|
16
|
Gaytán I, Burelo M, Loza-Tavera H. Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved. Appl Microbiol Biotechnol 2021; 105:991-1006. [PMID: 33427930 PMCID: PMC7798386 DOI: 10.1007/s00253-020-11073-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Abstract Acrylic polymers (AP) are a diverse group of materials with broad applications, frequent use, and increasing demand. Some of the most used AP are polyacrylamide, polyacrylic acid, polymethyl methacrylates, and polyacrylonitrile. Although no information for the production of all AP types is published, data for the most used AP is around 9 MT/year, which gives an idea of the amount of waste that can be generated after products’ lifecycles. After its lifecycle ends, the fate of an AP product will depend on its chemical structure, the environmental setting where it was used, and the regulations for plastic waste management existing in the different countries. Even though recycling is the best fate for plastic polymer wastes, few AP can be recycled, and most of them end up in landfills. Because of the pollution crisis the planet is immersed, setting regulations and developing technological strategies for plastic waste management are urgent. In this regard, biotechnological approaches, where microbial activity is involved, could be attractive eco-friendly strategies. This mini-review describes the broad AP diversity, their properties and uses, and the factors affecting their biodegradability, underlining the importance of standardizing biodegradation quantification techniques. We also describe the enzymes and metabolic pathways that microorganisms display to attack AP chemical structure and predict some biochemical reactions that could account for quaternary carbon-containing AP biodegradation. Finally, we analyze strategies to increase AP biodegradability and stress the need for more studies on AP biodegradation and developing stricter legislation for AP use and waste control. Key points • Acrylic polymers (AP) are a diverse and extensively used group of compounds. • The environmental fates and health effects of AP waste are not completely known. • Microorganisms and enzymes involved in AP degradation have been identified. • More biodegradation studies are needed to develop AP biotechnological treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11073-1.
Collapse
Affiliation(s)
- Itzel Gaytán
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México
| | - Manuel Burelo
- Laboratorio de Química Sostenible, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México.
| |
Collapse
|
17
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
18
|
Tirtom V, Dinçer A. Effective removal of heavy metals from an aqueous solution with poly(N-vinylimidazole-acrylamide) hydrogels. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1735434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- V.Nüket Tirtom
- Department of Chemistry, Faculty of Science and Arts, Manisa Celal Bayar Universty, Muradiye-Manisa, Türkiye
| | - Ayşe Dinçer
- Department of Chemistry, Faculty of Science and Arts, Manisa Celal Bayar Universty, Muradiye-Manisa, Türkiye
| |
Collapse
|
19
|
Hong X, Zhao Y, Zhuang R, Liu J, Guo G, Chen J, Yao Y. Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Adv 2020; 10:33086-33102. [PMID: 35694106 PMCID: PMC9122622 DOI: 10.1039/d0ra04705h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/16/2020] [Indexed: 12/03/2022] Open
Abstract
Bioaugmentation using specific microbial strains or consortia was deemed to be a useful bioremediation technology for increasing bioremediation efficiency. The present study confirmed the effectiveness and feasibility of bioaugmentation capability of the bacterium BC immobilized on sugarcane bagasse (SCB) for degradation of tetracycline antibiotics (TCAs) in soil. It was found that an inoculation dose of 15% (v/w), 28–43 °C, slightly acidic pH (4.5–6.5), and the addition of oxytetracycline (OTC, from 80 mg kg−1 to 160 mg kg−1) favored the bioaugmentation capability of the bacterium BC, indicating its strong tolerance to high temperature, pH, and high substrate concentrations. Moreover, SCB-immobilized bacterium BC system exhibited strong tolerance to heavy metal ions, such as Pb2+ and Cd2+, and could fit into the simulated soil environment very well. In addition, the bioaugmentation and metabolism of the co-culture with various microbes was a complicated process, and was closely related to various species of bacteria. Finally, in the dual-substrate co-biodegradation system, the presence of TC at low concentrations contributed to substantial biomass growth but simultaneously led to a decline in OTC biodegradation efficiency by the SCB-immobilized bacterium BC. As the total antibiotic concentration was increased, the OTC degradation efficiency decreased gradually, while the TC degradation efficiency still exhibited a slow rise tendency. Moreover, the TC was preferentially consumed and degraded by continuous introduction of OTC into the system during the bioremediation treatment. Therefore, we propose that the SCB-immobilized bacterium BC exhibits great potential in the bioremediation of TCAs-contaminated environments. Bioaugmentation using specific microbial strains or consortia was deemed to be a useful bioremediation technology for increasing bioremediation efficiency.![]()
Collapse
Affiliation(s)
- Xiaxiao Hong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Rudong Zhuang
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jiaying Liu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Guantian Guo
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jinman Chen
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yingming Yao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
20
|
Song T, Li S, Jin J, Yin Z, Lu Y, Bao M, Li Y. Enhanced hydrolyzed polyacrylamide removal from water by an aerobic biofilm reactor-ozone reactor-aerobic biofilm reactor hybrid treatment system: Performance, key enzymes and functional microorganisms. BIORESOURCE TECHNOLOGY 2019; 291:121811. [PMID: 31344634 DOI: 10.1016/j.biortech.2019.121811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Degradation of hydrolyzed polyacrylamide-containing (HPAM-containing) wastewater was investigated in a lab-scale aerobic-ozonic-aerobic hybrid treatment system. When the HPAM concentration was 500 mg L-1 and the ozone dose was 25 g O3/g TOC, the HPAM removal rate reached 90.79%. Experimental results obtained from gel permeation chromatography (GPC) and rheometer indicated that the refractory HPAM was decomposed into small-molecule compounds. High performance liquid chromatography (HPLC) analysis showed that there was no acrylamide (AM) in the effluent of the system. Microbial communities in two aerobic biofilm reactors (ABRs) were analyzed by Illumina MiSeq Sequencing, which indicated that norank_f_Cytophagaceae, Meiothermus, Bacillus, etc. were keystone functional bacterial genera and Methanobacterium, norank_p_Bathyarchaeota, norank_c_Marine_Group_Ⅰ, etc. were dominant functional archaeal groups. To our knowledge, this is the first study to treat HPAM-containing wastewater using an aerobic-ozonic-aerobic hybrid process. Good removal efficiencies and presence of functional microorganisms demonstrated that the hybrid treatment system was practical for treating HPAM-containing wastewater.
Collapse
Affiliation(s)
- Tianwen Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shanshan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiafeng Jin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yifeng Lu
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; China Petrochemical Corporation (Sinopec Group), Beijing 100728, China
| |
Collapse
|