1
|
Popescu VS, Zhang L, Papa G, Giuliani C, Ribaudo G, Abate G, Bulgari D, Mac Sweeney E, Pucci M, Bottoni M, Milani F, Zizioli D, Negri I, Gianoncelli A, Gobbi E, Uberti D, Lucini L, Memo M, Fico G, Peron G, Mastinu A. Ecotoxicological evaluation of an aqueous phytoextract of Melia azedarach L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175314. [PMID: 39117217 DOI: 10.1016/j.scitotenv.2024.175314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Melia azedarach L. is a Meliaceae that has shown important insecticidal activities. However, few researchers have extensively studied the toxicology of aqueous extracts of M. azedarach (MAE). Therefore, the main objective of this study was to characterize the phyto-eco-toxicological profile of MAE. First, a botanical and phytochemical characterization of MAE was performed using a histological, and metabolomic multi-analytical approach. Second, the toxicological effects on pollinating insects (Apis mellifera ligustica) and soil collembola (Folsomia candida) were evaluated. In addition, acute toxicity was evaluated in zebrafish (Danio rerio) to assess effects on aquatic fauna, and toxicity was determined in human neuroblastoma (SH-SY5Y) and fibroblast (FB-21) cell models. Finally, phytotoxic effects on germination of Cucumis sativus L., Brassica rapa L. and Sorghum vulgare L. were considered. Metabolomic analyses revealed the presence of not only limonoids but also numerous alkaloids, flavonoids and terpenoids in MAE. Histological analyses allowed us to better localize the areas of leaf deposition of the identified secondary metabolites. Regarding the ecotoxicological data, no significant toxicity was observed in bees and collembola at all doses tested. In contrast, severe cardiac abnormalities were observed in zebrafish embryos at concentrations as low as 25 μg/mL. In addition, MAE showed toxicity at 1.6 μg/mL and 6.25 μg/mL in FB-21 and SH-SY5Y cells, respectively. Finally, MAE inhibited seed germination with inhibitory concentrations starting from 5.50 μg/mL in B. rapa, 20 μg/mL in S. vulgare, and 31 μg/mL in C. sativus. Although M. azedarach extracts are considered valuable natural insecticides, their ecological impact cannot be underestimated. Even the use of an environmentally friendly solvent (an aqueous solution), for the first time, is not without side effects. Therefore, the data collected in this study show the importance of evaluating the dosages, modes of administration and production methods of M. azedarach phytoextracts in agricultural settings.
Collapse
Affiliation(s)
- Vlad Sebastian Popescu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Leilei Zhang
- Department of Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - Giulia Papa
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Claudia Giuliani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy; Ghirardi Botanical Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, Toscolano Maderno, Brescia, 25088, Italy.
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Daniela Bulgari
- Department of Food, Environmental, and Nutritional Sciences, University of Milan, 20133 Milan, Italy.
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Martina Bottoni
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy; Ghirardi Botanical Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, Toscolano Maderno, Brescia, 25088, Italy.
| | - Fabrizia Milani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy; Ghirardi Botanical Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, Toscolano Maderno, Brescia, 25088, Italy.
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Ilaria Negri
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Luigi Lucini
- Department of Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Gelsomina Fico
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy; Ghirardi Botanical Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, Toscolano Maderno, Brescia, 25088, Italy.
| | - Gregorio Peron
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
2
|
Olowoyo JO, Okoya AA, Adesiyan IM, Awe YT, Lion GN, Agboola OO, Oladeji OM. Environmental health science research: opportunities and challenges for some developing countries in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-25. [PMID: 38909292 DOI: 10.1080/09603123.2024.2370388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Due to ongoing developmental projects, there is a need for regular monitoring of the impact of pollutants on the environment. This review documented the challenges and opportunities in the field of environmental health sciences in some African countries. A systematic review was used to investigate opportunities and challenges in the field of environmental health science in Africa by examining published work with a specific focus on Africa. The reports showed that funding and infrastructure as the major problems. The study also highlighted recruiting study participants, retention, and compensation as a bane in the field in Africa. The absence of modern equipment also hinders research. The review, however, noted research collaboration from the region including studies on emerging pollutants such as pharmaceuticals, per and polyfluoroalkyl substances (PFAS), and microplastic (MPs) as great opportunities. The study concluded that collaboration with other continents, exchange programs and improved governmental interventions may help.
Collapse
Affiliation(s)
- J O Olowoyo
- Department of Health Sciences and The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences, South Africa
| | - A A Okoya
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - I M Adesiyan
- Department of Environmental and Occupational Health, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Y T Awe
- Environmental Management Program, Pan African University of Life and Earth Sciences, University of Ibadan, Oyo State, Nigeria
| | - G N Lion
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences, South Africa
| | - O O Agboola
- Department of Botany, University Lokoja, Kogi State, Nigeria
- Department of Biological Sciences, Federal University of Health Sciences Otukpo, Benue State, Nigeria
| | - O M Oladeji
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences, South Africa
| |
Collapse
|
3
|
Muhanmaitijiang N, Hu X, Shan D, Chen H. Removal of Pb pollution using alginate-coupled magnetic sludge biochar: Solidification and stabilization behavior and electron promotion mechanisms. Int J Biol Macromol 2024; 272:132725. [PMID: 38821303 DOI: 10.1016/j.ijbiomac.2024.132725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Environmental and human health problems caused by Pb pollution have attracted much attention, and solidification and stabilization are effective means for its remediation. Improving the ability of biochar to remediate heavy metals through modification is the focus of current biochar research. This study used calcium-alginate gel (GB) and Fe3+ (magnetic) to encapsulate and improve sludge biochar (SB), and explored the adsorption behavior and passivation mechanism of Pb2+ on it from outside to inside. The magnetic-biochar (MB) in magnetic-biochar-gel microspheres (MBGB) showed a homogeneous dispersion and part of the Fe ion was detached from the MB into the three-dimensional pores of the gel. The results of kinetic, isothermal and pH adsorption experiments showed that the MBGB has 108.4 % and 200 % higher Pb2+ adsorption capacity and rate than SB and can be applied to pH 3-9. The adsorption of Pb2+ by MBGB is a multilayer adsorption with both physical and chemical mechanisms. Mineralogical and electrochemical results demonstrate that the cross-linking of the gel with magnetic-biochar (MB) can provide a directional diffusion channel for Pb2+ from the outside to the inside. The electron transfer rate of MBGB was significantly higher than that of SB (222.2 %) after the reaction. The dissolved cations and electrons on the MB guide Pb2+ from the MBGB surface to the internal MB quickly via accelerating the electron transfer and migration rate between Pb2+ and MB. Subsequently, the abundance of PO43- on the MB ensures stable mineral precipitation (Pyromorphite). Moreover, four-step extraction analysis confirmed that most of Pb2+ in MBGB was stable (36.2 % acid-soluble and 47.6 % non-bioavailable). Meanwhile, the Pb adsorption efficiency of MBGB was still >93.0 % after three cycles of adsorption-desorption. Excellent reuse performance and stability guarantee the environmental security of MBGB. The results of the study provide theoretical support for the efficient treatment of Pb2+ polluted water assisted by gel materials.
Collapse
Affiliation(s)
- Nazhafati Muhanmaitijiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China..
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China..
| |
Collapse
|
4
|
Cao Q, Wei D, Ma X, Liu R, Samra, Qi Y, Yuan C, Huang D. Polystyrene microplastics mitigate lead-induced neurotoxicity by reducing heavy metal uptake in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170790. [PMID: 38331279 DOI: 10.1016/j.scitotenv.2024.170790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The combined pollution of lead (Pb) and polystyrene microplastics (PS-MPs) is common in aquatic environments. However, the combined neurotoxicity of these two pollutants is still poorly understood. In this study, zebrafish (Danio rerio) larvae were used to assess the combined neurotoxicity and mechanism of Pb and PS-MPs at environmentally relevant concentrations. The results showed that Pb (10 μg/L) induced abnormal behavior including significantly reduced movement distance, maximum acceleration, and average velocity (P < 0.05) along with altered expression of neurodevelopment-related genes (gap43 and α1-tubulin) (P < 0.05). PS-MPs (25 μg/L, 250 μg/L; diameter at 25 μm) co-exposure not only significantly reduced the concentration of Pb in the exposed solution (P < 0.01), but also decreased the uptake of Pb by downregulating the divalent metal transporter 1 gene (dmt1) (P < 0.01), thereby alleviating Pb-induced neurotoxicity. However, to demonstrate that PS-MPs alleviate the neurotoxicity of Pb by reducing Pb uptake, upregulation of dmt1 by addition of deferoxamine (DFO, an efficient iron chelator, 100 μM) significantly increased the Pb uptake and exacerbated neurotoxicity in zebrafish. In summary, our results demonstrated that PS-MPs alleviate Pb neurotoxicity by downregulating the mRNA level of dmt1 and decreasing the Pb uptake. This study provides a new insight into the combined neurotoxicity and underlying mechanisms of PS-MPs and Pb on zebrafish.
Collapse
Affiliation(s)
- Qiyue Cao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China; Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Dongqiong Wei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Xuan Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Rongjian Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Samra
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China.
| |
Collapse
|
5
|
Huang Y, Wu J, Lu Y, Wang R, Lan Y, Jia N. Use of acoustic stimulus to determine behavioral changes in zebrafish after Cd exposure in a water quality warning system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168943. [PMID: 38036119 DOI: 10.1016/j.scitotenv.2023.168943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Behavioral changes in zebrafish are an effective early warning system to determine water quality. However, only a few studies have examined the response of zebrafish to non-chemical stimulus after exposure to a contaminant. Therefore, this study investigated the differences in the behavioral responses of zebrafish to acoustic stimuli before and after exposure to cadmium (Cd). Acoustic escape response sensitivity curves were obtained and analyzed, followed by the determination of sensitive stimulus conditions at 100 Hz and 97 dB with a duration of 30 s and an interval of 30 min. Zebrafish exhibit a significant acoustic escape response, which is significantly reduced after exposure to Cd. The results showed that zebrafish stop demonstrating acoustic escape responses when exposed to higher Cd concentrations or longer acoustic exposures. Based on these results, a novel method for detecting abnormal behavior in zebrafish by acoustic stimulation has been proposed, which is expected to reduce the false alarm rate of this type of water quality technology.
Collapse
Affiliation(s)
- Yi Huang
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| | - Junxu Wu
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Yuetong Lu
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Runchao Wang
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Yaqiong Lan
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Ning Jia
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
6
|
Dey KK, Mondal P, Chattopadhyay A. Environmentally relevant lead alters nuclear integrity in erythrocytes and generates oxidative stress in liver of Anabas testudineus: Involvement of Nrf2-Keap1 regulation and expression of biomarker genes. J Appl Toxicol 2024; 44:260-271. [PMID: 37655692 DOI: 10.1002/jat.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Genotoxic and hepatotoxic effects of lead (Pb) on a freshwater fish, climbing perch (Anabas testudineus) were studied at an environmentally relevant concentration (43.3 ppm). The genotoxic potential of Pb was confirmed by micronucleus study, with increased frequencies of erythrocytic nuclear alterations like lobed, blebbed, notched, fragmented, and micronuclei were observed in erythrocytes in treated groups as compared to control. Inorganic Pb induces oxidative stress which is a consequence of elevated level of Reactive Oxygen Species. Hepatotoxicity was assessed both by the oxidative stress and cellular responses that emerged due to the toxic assault of Pb in the liver, the most important detoxifying organ. Upregulation of xenobiotic metabolizing enzyme like catalase was evident after 15, 30, and 90 days of exposure, and a profound effect was observed on 30th days. The level of lipid peroxidation and reduced glutathione was increased after Pb exposure. Histoarchitectural damages of liver were distinctly evident in treated fish. Western blot analysis confirmed the expressional alterations of stress-responsive marker proteins like Nrf2, Keap1, Hsp70, and Nqo1. Pb exposure resulted in increased expression of Hsp70, Nrf2, and Nqo1, whereas Keap1 was downregulated, suggesting the involvement of Nrf2-Keap1 regulation as a cytoprotective mechanism against Pb toxicity.
Collapse
|
7
|
Silva MC, de Castro AA, Lopes KL, Ferreira IFL, Bretz RR, Ramalho TC. Combining computational tools and experimental studies towards endocrine disruptors mitigation: A review of biocatalytic and adsorptive processes. CHEMOSPHERE 2023; 344:140302. [PMID: 37788749 DOI: 10.1016/j.chemosphere.2023.140302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
The endocrine disruptors (EDCs) are an important group of emerging contaminants, and their mitigation has been a huge challenge due to their chemistry complexity and variety of these compounds. The traditional treatments are inefficient to completely remove EDCs, and adsorptive processes are the major alternative investigated on their removal. Also, the use of EDCs degrading enzymes has been encouraged due to ecofriendly approach of biocatalytic processes. This paper highlights the occurrence, classification, and toxicity of EDCs with special focus in the use of enzyme-based and adsorptive technologies in the elimination of EDCs from ambiental matrices. Numerous prior reviews have focused on the discussions toward these technologies. However, the literature lacks theoretical discussions about important aspects of these methods such as the mechanisms of EDCs adsorption on the adsorbent surface or the interactions between degrading enzymes - EDCs. In this sense, theoretical calculations combined to experimental studies may help in the development of more efficient technologies to EDCs mitigation. In this review, we point out how computational tools such as molecular docking and molecular dynamics have to contribute to the design of new adsorbents and efficient catalytic processes towards endocrine disruptors mitigation.
Collapse
Affiliation(s)
- Maria Cristina Silva
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil.
| | | | - Karla Lara Lopes
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | - Igor F Lara Ferreira
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | - Raphael Resende Bretz
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Neckel A, Toscan PC, Kujawa HA, Bodah BW, Korcelski C, Maculan LS, de Almeida Silva CCO, Junior ACG, Snak A, Moro LD, Silva LFO. Hazardous elements in urban cemeteries and possible architectural design solutions for a more sustainable environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50675-50689. [PMID: 36800092 PMCID: PMC9936489 DOI: 10.1007/s11356-023-25891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
The general objective of this study is to identify the presence of hazardous elements in the soils of five urban cemeteries in the city of Passo Fundo, in southern Brazil, and to design solutions (architecturally) for future cemeteries to be more sustainable by mitigating toxicological risks to the population residing in the area. A total of 250 soil samples were obtained from points within the cemeteries and in areas surrounding the two oldest cemeteries at a distance of up to 400 m. Twelve architects who design cemeteries primarily focused on sustainability were interviewed, and presented their suggestions for sustainable urban cemetery design. The Building Information Modeling (BIM) computer modeling system was utilized to present a visual representation of suggested architectural features by these architects. The concentration of Pb in the vicinity of cemeteries deserves special attention, as concentrations of this neurotoxin exceed the federal limits set by Brazil. Soil Pb values were found to exceed the limit of 72 mg kg-1 up to a distance of 400 m from the walls of cemeteries A and B, indicating the presence of a danger to human health even at greater distances. This manuscript highlights construction features that enable future burial structures to adequately mitigate the very real problem of contaminants entering the environment from current cemetery design. Two-thirds of the technicians interviewed for this manuscript, each of whom specialize in Brazilian cemetery design, highlighted the importance of revitalizing urban vegetation both when constructing and revitalizing urban vertical cemeteries.
Collapse
Affiliation(s)
- Alcindo Neckel
- Atitus Educação, 304, Passo Fundo, RS, 99070-220, Brazil.
| | | | | | - Brian William Bodah
- Atitus Educação, 304, Passo Fundo, RS, 99070-220, Brazil
- Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA
- Yakima Valley College, Workforce Education & Applied Baccalaureate Programs, South16th Avenue & Nob Hill Boulevard, Yakima, WA, 98902, USA
| | | | | | | | - Affonso Celso Gonçalves Junior
- Center for Medical and Pharmaceutical Sciences, State University of Western Paraná - UNIOESTE, 1619 R, Universitária, Cascavel, PR, 85819-110, Brazil
| | - Aline Snak
- Center for Medical and Pharmaceutical Sciences, State University of Western Paraná - UNIOESTE, 1619 R, Universitária, Cascavel, PR, 85819-110, Brazil
| | - Leila Dal Moro
- Atitus Educação, 304, Passo Fundo, RS, 99070-220, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
9
|
Huang A, Zhang J, Wu K, Liu C, Huang Q, Zhang X, Lin X, Huang Y. Exposure to multiple metals and the risk of dyslexia - A case control study in Shantou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119518. [PMID: 35618141 DOI: 10.1016/j.envpol.2022.119518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Environmental heavy metal exposure has been considered to be the risk factor for neurodevelopmental disorders in children. However, the available data on the associations between multiple metals exposure and the risk of dyslexia in China are limited. The purpose of our study was to examine the associations between urinary metal concentrations and Chinese dyslexia risk. A total of 56 Chinese dyslexics and 60 typically developing children were recruited. The urinary concentration of 13 metals were measured by inductively coupled plasma-mass spectrometer (ICP-MS). Binary logistic regression and the Probit extension of Bayesian kernel machine regression (BKMR-P) were used to explore the associations between multiple metal exposure and the risk of Chinese dyslexia. Our results indicated that Co, Zn and Pb were significantly associated with Chinese dyslexia in the multiple-metal exposure model. After adjusting the covariates, a positive association was observed between Pb and the risk of Chinese dyslexia, with the odds ratio (OR) in the highest quartiles of 6.81 (95%CI: 1.07-43.19; p-trend = 0.024). Co and Zn were negatively associated with the risk of Chinese dyslexia. Compared to the lowest quartile, the ORs of Co and Zn in the highest quartile are 0.13 (95%CI: 0.02-0.72; p-trend = 0.026) and 0.18 (95%CI: 0.04-0.88; p-trend = 0.038), respectively. In addition, BKMR-P analysis indicated that with the cumulative level across Co, Zn and Pb increased, the risk of Chinese dyslexia gradually declined and then rebounded, albeit non-significantly, and Pb was the major contributor in this association. In general, the urinary concentrations of Co, Zn and Pb were significantly associated with Chinese dyslexia. More prospective studies are needed to confirm the health effects of multiple metals exposure in children with Chinese dyslexia.
Collapse
Affiliation(s)
- Anyan Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Jingbing Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Qingjun Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Xuanzhi Zhang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Xuecong Lin
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| | - Yanhong Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, 515065, Guangdong Province, China
| |
Collapse
|
10
|
Morphological and Functional Alterations Induced by Two Ecologically Relevant Concentrations of Lead on Danio rerio Gills. Int J Mol Sci 2022; 23:ijms23169165. [PMID: 36012426 PMCID: PMC9409012 DOI: 10.3390/ijms23169165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Lead (Pb), due to its high toxicity and bioaccumulation tendency, is one of the top three pollutants of concern for both humans and wildlife and occupies second place in the Priority List of Hazardous Substances. In freshwater fish, Pb is mainly absorbed through the gills, where the greatest accumulation occurs. Despite the crucial role of gills in several physiological functions such as gas exchange, water balance, and osmoregulation, no studies evaluated the effects of environmentally relevant concentrations of Pb on this organ, and existing literature only refers to high levels of exposure. Herein we investigated for the first time the molecular and morphological effects induced by two low and environmentally relevant concentrations of Pb (2.5 and 5 μg/L) on the gills of Danio rerio, a model species with a high translational value for human toxicity. It was demonstrated that Pb administration at even low doses induces osmoregulatory dysfunctions by affecting Na+/K+-ATPase and AQP3 expression. It was also shown that Pb upregulates MTs as a protective response to prevent cell damage. Modulation of SOD confirms that the production of reactive oxygen species is an important toxicity mechanism of Pb. Histological and morphometric analysis revealed conspicuous pathological changes, both dose- and time-dependent.
Collapse
|
11
|
Nag R, Cummins E. Human health risk assessment of lead (Pb) through the environmental-food pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151168. [PMID: 34710405 DOI: 10.1016/j.scitotenv.2021.151168] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Drinking water and farm-to-fork pathways have been identified as the predominant environmental pathways associated with human exposure (HE) to Pb. This study integrates a GIS-based survey of metal concentrations in soil and a probabilistic quantitative risk assessment of Pb through the food chain. The case study area was selected in the east of Ireland. A step-wise exposure assessment collated the data for Pb concentration in soil and water media, bioaccumulation of Pb in unprocessed food products, such as potatoes, carrots, green vegetables, and salad vegetables. The daily mean HE to Pb through selected food products was found to be 0.073 mg day-1, where a mean weekly exposure was estimated as 0.0065 mg kg body weight-1 week-1. Multiple risk estimates were used. Hazard Quotient (HQ), Daily Dietary Index (DDI), Daily Intake of Metal (DIM), Health Risk Index (HRI), Target Hazard Quotient (THQ) and Cancer Risk (CR) were found as 0.234 to 0.669, 0.002, 0.0002, 0.020 to 0.057, 0.234 to 0.669, and 0.00001, respectively which signify a low to moderate risk. A sensitivity analysis revealed that intake of potato is the most sensitive parameter of the model, which is positively correlated (coeff. + 0.66) followed by concentration of Pb in the arable soil (+0.49), bioaccumulation in tubers (+0.37), consumption of salad vegetables (+0.20), and consumption of green vegetables (+0.13) (top 5). A back-calculated limit of Pb in the soil (51 mg kg-1) justifies the lower threshold limit of Pb (50-300 mg kg-1) in agricultural soil set by the European Union to mitigate potential bio-transfer into food products. The study concludes there is a low to moderate risk posed by Pb, within the system boundary of the probabilistic model, and highlights the significance of limiting Pb concentrations in the vegetable producing agricultural soil.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
von Hellfeld R, Pannetier P, Braunbeck T. Specificity of time- and dose-dependent morphological endpoints in the fish embryo acute toxicity (FET) test for substances with diverse modes of action: the search for a "fingerprint". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16176-16192. [PMID: 34643865 PMCID: PMC8827326 DOI: 10.1007/s11356-021-16354-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The fish embryo acute toxicity (FET) test with the zebrafish (Danio rerio) embryo according to OECD TG 236 was originally developed as an alternative test method for acute fish toxicity testing according to, e.g., OECD TG 203. Given the versatility of the protocol, however, the FET test has found application beyond acute toxicity testing as a common tool in environmental hazard and risk assessment. Whereas the standard OECD guideline is restricted to four core endpoints (coagulation as well as lack of somite formation, heartbeat, and tail detachment) for simple, rapid assessment of acute toxicity, further endpoints can easily be integrated into the FET test protocol. This has led to the hypothesis that an extended FET test might allow for the identification of different classes of toxicants via a "fingerprint" of morphological observations. To test this hypothesis, the present study investigated a set of 18 compounds with highly diverse modes of action with respect to acute and sublethal endpoints. Especially at higher concentrations, most observations proved toxicant-unspecific. With decreasing concentrations, however, observations declined in number, but gained in specificity. Specific observations may at best be made at test concentrations ≤ EC10. The existence of a "fingerprint" based on morphological observations in the FET is, therefore, highly unlikely in the range of acute toxicity, but cannot be excluded for experiments at sublethal concentrations.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
- University of Aberdeen, Institute of Biological and Environmental Science, 23 St Machar Drive, AB24 3UU, Aberdeen, UK.
| | - Pauline Pannetier
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Wang B, Zhu J, Wang A, Wang J, Wu Y, Yao W. Early detection of cyanide, organophosphate and rodenticide pollution based on locomotor activity of zebrafish larvae. PeerJ 2022; 9:e12703. [PMID: 35036170 PMCID: PMC8710045 DOI: 10.7717/peerj.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Cyanide, organophosphate and rodenticides are highly toxic substances widely used in agriculture and industry. These toxicants are neuro- and organotoxic to mammals at low concentrations, thus early detection of these chemicals in the aqueous environment is of utmost importance. Here, we employed the behavioral toxicity test with wildtype zebrafish larvae to determine sublethal concentrations of the above mentioned common environmental pollutants. After optimizing the test with cyanide, nine rodenticides and an organophosphate were successfully tested. The compounds dose-dependently initially (0-60-min exposure) stimulated locomotor activity of larvae but induced toxicity and reduced swimming during 60-120-min exposure. IC50 values calculated based on swimming distance after 2-h exposure, were between 0.1 and 10 mg/L for both first-generation and second-generation anticoagulant rodenticides. Three behavioral characteristics, including total distance travelled, sinuosity and burst count, were quantitatively analyzed and compared by hierarchical clustering of the effects measured by each three parameters. The toxicity results for all three behavioral endpoints were consistent, suggesting that the directly measured parameter of cumulative swimming distance could be used as a promising biomarker for the aquatic contamination. The optimized method herein showed the potential for utilization as part of a monitoring system and an ideal tool for the risk assessment of drinking water in the military and public safety.
Collapse
Affiliation(s)
- Binjie Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou, Zhejiang province, People's Republic of China
| | - Junhao Zhu
- The Department of Criminal Science and Technology, Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou, Zhejiang province, People's Republic of China
| | - Anli Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou, Zhejiang province, People's Republic of China.,College of Biosystems Engineering and Food Science, Zhejiang University, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jiye Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou, Zhejiang province, People's Republic of China
| | - Yuanzhao Wu
- The Department of Criminal Science and Technology, Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou, Zhejiang province, People's Republic of China
| | - Weixuan Yao
- The Department of Criminal Science and Technology, Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou, Zhejiang province, People's Republic of China
| |
Collapse
|
14
|
Wang Z, Zhao H, Xu Y, Zhao J, Song Z, Bi Y, Li Y, Lan X, Pan C, Foulkes NS, Zhang S. Early-life lead exposure induces long-term toxicity in the central nervous system: From zebrafish larvae to juveniles and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150185. [PMID: 34509844 DOI: 10.1016/j.scitotenv.2021.150185] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Lead induced neurotoxicity has been extensively investigated. However, the potential connections between early-life lead exposure and the frequently observed aberrant neurobehavior in juveniles and adults remain unclear. In this study, zebrafish model was used to explore the immediate and long-term effects of early-life exposure to environmental levels of lead on the central nervous system, and the cellular and molecular mechanisms underlying the consequent abnormal neurobehavior. Lead exposed zebrafish larvae exhibited neurologic damage and defective neurobehavior. Consistent with clinical studies, despite being raised in lead-free conditions, the juvenile and adult fish experienced lead exposure earlier, presented ADHD-like symptoms, and the adult fish exhibited remarkably affected vitality and shoaling behavior. Their anxiety levels were elevated, whereas their social interaction, as well as learning and memory were strongly depressed. The expression profiles of key genes involved in neurodevelopment and neurotransmitter systems were significantly modulated, in similar patterns as in the larval stage. Notably, the density of neurons was decreased and varicosities in neuronal axons were frequently observed in the lead-exposed groups. It's tempting to speculate that the disruption of early neurodevelopment as well as the prolonged modulation of neuromorphic and neurotransmitter systems contribute to the lead-induced neurobehavioral disorders observed in juveniles and adulthood.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Jianing Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
15
|
Bownik A, Wlodkowic D. Advances in real-time monitoring of water quality using automated analysis of animal behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147796. [PMID: 34049143 DOI: 10.1016/j.scitotenv.2021.147796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Monitoring of freshwater quality and its potential sudden contamination is integral to human health, sustainable economic development and prediction of pollutant impact on aquatic ecosystems. Although there have been significant advances in technologies for automated sampling and continuous analysis of water physicochemical parameters, the current capabilities for real-time warning against rapidly developing unknown mixtures of chemical hazards are still limited. Conventional chemical analysis systems are not suitable for assessing unknown mixtures of chemicals as well as additive and/or synergetic effects on biological systems. From the perspective of neurotoxicology the acute exposures to chemical agents that affect nervous system and can enter the freshwater supplies accidentally or as a result of deliberate action, can only be reliably assessed using appropriate functional biological models. In this regard real-time biological early warning systems (BEWS), that can continuously monitor behavioural and/or physiological parameters of suitable aquatic bioindicator species, have been historically proposed to fill the gap and supplement conventional water quality test strategies. Alterations in sub-lethal neuro-behavioural traits have been proven as very sensitive and physiologically relevant endpoints that can provide highly integrative water quality sensing capabilities. Although BEWS are commonly regarded as non-specific and lacking both quantitative and qualitative detection capabilities, their advantages, if properly designed and implemented, lie in continuous sensing and early-warning information about sudden alteration in water quality parameters. In this work we review the future prospects of real-time biological early warning systems as well as recent developments that are anchored in historical successes and practical deployment examples. We concentrate on technologies utilizing analysis of behavioural and physiological endpoints of animal bioindicators and highlight the existing challenges, barriers to future development and demonstrate how recent advances in inexpensive electronics and multidisciplinary bioengineering can help revitalize the BEWS field.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
16
|
Li X, Dang J, Li Y, Wang L, Li N, Liu K, Jin M. Developmental neurotoxicity fingerprint of silica nanoparticles at environmentally relevant level on larval zebrafish using a neurobehavioral-phenomics-based biological warning method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141878. [PMID: 32890834 DOI: 10.1016/j.scitotenv.2020.141878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Larval zebrafish (Danio rerio) is not only an ideal vertebrate applied in Fish Embryos Toxicity (FET) test but also a well-accepted model in behavioral neurotoxicity research. By applying the commercial standard behavioral tracking system (Zebrabox), the locomotion profiles (neurobehavioral-phenomics) of larval zebrafish can be comprehensively monitored and systematically analyzed to probe ecotoxicological neurotoxicity of nano-pollutants at environmental relevant concentration level. RESULTS Herein, the potential toxicity of at environment relevant concentration level on embryonic zebrafish was evaluated by FET and neurobehavioral-phenomics (NBP). The embryos were exposed to the environmental relevant concentration (0.05, 0.1,1, 5, 10, 100 μg/L). The FET criteria were utilized to evaluate the ecotoxicological effect induced by silica NPs. Subsequently, behavioral neurotoxicity of silica NPs was further quantified via locomotion response (LMR). Specifically, the alteration of Light/Dark challenge (LDC) evoked by light/dark stimulation was detected and analyzed by commercially standard behavioral protocols using zebrabox. We revealed that the exposures of silica NPs at environmental relevant concentration (0.05, 0.1, 1, 5, 10,100 μg/L) significantly disturbed locomotion profiles of larval zebrafish. Additionally, it was obviously noted that low, environmentally relevant silica concentrations might result in altering the total behavioral profiles in developing zebrafish. CONCLUSIONS In sum, neurobehavior phenomics profiling based on LMR and LDC is a potent methodology for the evaluation of sub-lethal or sub-teratogenic toxicity. Compared with the FET tests characterized by the detection of embryonic teratogenicity, the neurobehavior phenomics based method can be more sensitive to determine sub-teratogenic toxicity of silica NPs at environmental concentrations. With the combination of multivariate data analysis, this approach would offer effective technical reference for environmental nano-toxicology research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, NO. 44 West Culture Road, Ji'nan 250012, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Yan Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Ji'nan 250353, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
17
|
Kataba A, Botha TL, Nakayama SMM, Yohannes YB, Ikenaka Y, Wepener V, Ishizuka M. Acute exposure to environmentally relevant lead levels induces oxidative stress and neurobehavioral alterations in larval zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105607. [PMID: 32861022 DOI: 10.1016/j.aquatox.2020.105607] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitous contamination of environmental lead (Pb) remains a worldwide threat. Improper Pb mine waste disposal from an abandoned lead-zinc mine has recently unearthed widespread Pb poisoning in children in Kabwe Zambia. Although the adverse effects of Pb on human health have begun to receive attention, the ecotoxicological effects on aquatic vertebrates still need further investigation. In addition, there is paucity in the knowledge on the behavioural and molecular subcellular responses in larval zebrafish exposed to Pb within the range of environmental relevant concentration (average 3 μg/L with maximum of 94 μg/L) on aquatic organisms such as zebrafish. The adverse effects of environmentally relevant levels of Pb on larval zebrafish was evaluated by measuring swimming behaviour under alternating dark and light conditions. Larval zebrafish acutely exposed to environmentally relevant Pb exhibited neuro-behavioural alteration including enhanced hyperactivity under light conditions evidenced by increased distanced covered and speed compared to the control. The alteration of entire behavioral profiles was further associated with the disturbed expression patterns of mRNA level of key genes associated with antioxidant (HO-1, Ucp-2 and CoxI), proapoptotic gene (TP53), and antiapoptotic gene (Bcl-2). To our knowledge, this is the first report on the effects of environmentally relevant Pb levels from Kabwe, Zambia and their adverse neurobehavioural effects and subcellular molecular oxidative responses in larval zebrafish acutely exposed within a 30 min period. The current results would be beneficial in our understanding of the effects of low Pb levels acutely discharged into an aquatic environment and the life of aquatic organisms.
Collapse
Affiliation(s)
- Andrew Kataba
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Biomedical Sciences, School of Veterinary Medicine, The University of Zambia, P. O. Box 32379, Lusaka, Zambia
| | - Tarryn L Botha
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yared B Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Chemistry, College of Natural and Computational Science, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Victor Wepener
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
18
|
Park K, Han EJ, Ahn G, Kwak IS. Effects of thermal stress-induced lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative defense, and DNA methylation in zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105479. [PMID: 32417751 DOI: 10.1016/j.aquatox.2020.105479] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is a toxic environmental pollutant that is frequently present in effluents from urban, mining, and industrial sources. The combinatorial effects of heavy metal exposure and temperature in aquatic organisms have received considerable attention as heat stress occurs simultaneously in conjunction with several contaminants in a natural environment. In this study, we examined the potential effects of Pb exposure in conditions of thermal stress (34 °C) in zebrafish (Danio rerio) embryos. Thermal stress at 34 °C induced a dramatic decrease in the survival rate, although exposure to Pb at 26 °C decreased the survival rate of the embryos. Malformations, such as the curved body shape, were increased in response to exposure to a combination of Pb and heat stress. The combination of Pb and heat stress also caused a decrease in the heart rate. Moreover, Pb and high-temperature exposure induced the upregulation of SOD, CAT, TNF-α, IL-1β, p53, and BAX transcripts, and downregulation of Dnmt1 and Dnmt3b transcripts. Thermal stress enhanced transcriptional responses of eight indicator genes following Pb toxicity. The induction of cell death in response to combined exposures was also confirmed in the body of zebrafish by fluorescence intensity image analysis. These data indicated that thermal stress enhanced the poisonous effects of Pb exposure on antioxidant defense, inflammation, and apoptotic mechanisms. Transcriptional inhibition of DNA methylation-related genes might serve as a crucial factor contributing to the possibility of epigenetic adaptation by altering combined stress. We suggest that a careful evaluation of the potential effects of climate change (especially temperature) should be considered when investigating the toxic levels of metal pollution, such as Pb, in an aquatic environment.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Eui Jeong Han
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu, 550-749, South Korea.
| |
Collapse
|
19
|
Shang X, Ji X, Dang J, Wang L, Sun C, Liu K, Sik A, Jin M. α-asarone induces cardiac defects and QT prolongation through mitochondrial apoptosis pathway in zebrafish. Toxicol Lett 2020; 324:1-11. [PMID: 32035120 DOI: 10.1016/j.toxlet.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
α-asarone is a natural phenylpropene found in several plants, which are widely used for flavoring foods and treating diseases. Previous studies have demonstrated that α-asarone has many pharmacological functions, while some reports indicated its toxicity. However, little is known about its cardiovascular effects. This study investigated developmental toxicity of α-asarone in zebrafish, especially the cardiotoxicity. Zebrafish embryos were exposed to different concentrations of α-asarone (1, 3, 5, 10, and 30 μM). Developmental toxicity assessments revealed that α-asarone did not markedly affect mortality and hatching rate. In contrast, there was a concentration-dependent increase in malformation rate of zebrafish treated with α-asarone. The most representative cardiac defects were increased heart malformation rate, pericardial edema areas, sinus venosus-bulbus arteriosus distance, and decreased heart rate. Notably, we found that α-asarone impaired the cardiac function of zebrafish by prolonging the mean QTc duration and causing T-wave abnormalities. The expressions of cardiac development-related key transcriptional regulators tbx5, nkx2.5, hand2, and gata5 were all changed under α-asarone exposure. Further investigation addressing the mechanism indicated that α-asarone triggered apoptosis mainly in the heart region of zebrafish. Moreover, the elevated expression of puma, cyto C, afap1, caspase 3, and caspase 9 in treated zebrafish suggested that mitochondrial apoptosis is likely to be the main reason for α-asarone induced cardiotoxicity. These findings revealed the cardiac developmental toxicity of α-asarone, expanding our knowledge about the toxic effect of α-asarone on living organisms.
Collapse
Affiliation(s)
- Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
20
|
Zhang J, Qian L, Wang C, Teng M, Duan M, Zhou Y, Chen X, Bo R, Wang C, Li X. Dysregulation of endocrine disruption, apoptosis and the transgenerational toxicity induced by spirotetramat. CHEMOSPHERE 2020; 240:124900. [PMID: 31563099 DOI: 10.1016/j.chemosphere.2019.124900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Spirotetramat (SPT) is a new tetronic acid derivative insecticide used to control scales and aphids; the potential for endocrine disruptor effects in fish could not be finalized with the available data. In this study, zebrafish were selected to assess the endocrine-disrupting effects. Significant decrease of plasma estradiol (E2), testosterone (T) and 11-ketotestosterone (11-KT) were observed in both male and female following the spirotetramat exposure; the vitellogenin (VTG) level in females significantly decreased. The expression of the hypothalamic-pituitary-gonad (HPG) axis genes fshr, lhr and esr1 showed significant increase in the gonads, which expression in males is higher than in females. In addition, the activities of capspase-3 and caspase-9 significantly decreased in both males and females liver, while the capspase-3 and caspase-9 were increased in male testis, the mRNA expression levels of genes expression related to the apoptosis pathway were also significantly altered after the spirotetramat exposure. Additionally, we found the parental zebrafish exposed to spirotetramat induced the development delay of its offspring. Above all, the adverse effects induced by spirotetramat suggesting that spirotetramat is a potential exogenous hazardous agent.
Collapse
Affiliation(s)
- Jie Zhang
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Le Qian
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Manman Duan
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yimeng Zhou
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangguang Chen
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Rui Bo
- The Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
21
|
Li X, Ji X, Wang R, Zhao J, Dang J, Gao Y, Jin M. Zebrafish behavioral phenomics employed for characterizing behavioral neurotoxicity caused by silica nanoparticles. CHEMOSPHERE 2020; 240:124937. [PMID: 31574441 DOI: 10.1016/j.chemosphere.2019.124937] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, silica nanoparticles (SiNPs) as one of the most productive nano-powder, has been extensively applied in various filed. The potential harm of SiNPs has previously received severe attention. A bulk of researches have proven the adverse effect of SiNPs on the health of ecological organisms and human. However, neurotoxic impacts of SiNPs, still remain in the stage of exploration. The potential neurotoxic effects of SiNPs need to be further explored. And the toxic mechanism needs comprehensive clarification. Herein, the neurotoxicity of SiNPs of various concentrations (100, 300, 1000 μg/mL) on adult zebrafish was determined by behavioral phenotyping and confirmed by molecular biology techniques such as qPCR. Behavioral phenotype revealed observable effects of SiNPs on disturbing light/dark preference, dampening exploratory behavior, inhibiting memory capability. Furthermore, the relationship between neurotoxic symptom and the transcriptional alteration of autophagy- and parkinsonism-related genes was preliminarily assessed. Importantly, further investigations should be carried out to determine the effects of SiNPs to cause neurodegeneration in the brain as well as to decipher the specific neurotoxic mechanisms. In sum, this work comprehensively evaluated the neurotoxic effect of small-sized SiNPs on overall neurobehavioral profiles and indicated the potential for SiNPs to cause Parkinson's disease, which will provide a solid reference for the research on the neurotoxicity of SiNPs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO. 44 West Culture Road, Ji'nan, 250012, Shandong Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Jinghang Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Yan Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|