1
|
Sarker A, Yoo JH, Jeong WT. Environmental fate and metabolic transformation of two non-ionic pesticides in soil: Effect of biochar, moisture, and soil sterilization. CHEMOSPHERE 2023; 345:140458. [PMID: 37844696 DOI: 10.1016/j.chemosphere.2023.140458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Soil moisture, organic matter, and soil microbes are the key considering factors that control the persistence, degradation, and transformation of applied pesticides under varied soil conditions. In this study, underlying influence of these factors was assessed through the fates and metabolic transformation of two non-ionic pesticides (e.g., Phorate and Terbufos) in soils. Concisely, two distinct experiments including a customized batch equilibrium (sorption study), and a lab incubation trial (degradation study) were performed, following the OECD guidelines. As per study findings, biochar (BC) amendment was found to be the most influential factors during sorption study, particularly, 1% BC amendment contributed to achieve the best results. In addition, the non-linearity of sorption isotherm (1/n < 1.0) was revealed through Freundlich isotherm, indicating the strong adsorption of studied pesticides onto the soils. On the other hand, during degradation study, soil moisture initiates the enhanced degradation of parent pesticides and subsequent metabolism. In the presence of 40% water holding capacity (WHC), 1% BC amendment enhances the metabolic transformation, while H2O2 treatment could hinder the process. Additionally, the half-life degradation (t1/2) of phorate and terbufos was controlled by biochar amendment, moisture, and soil sterilization, respectively. Finally, BC can accelerate the metabolic transformation, whereas, phorate underwent a metabolic change into sulfoxide and sulfone while terbufos turned into solely sulfoxide. This pioneering study gathered crucial data for understanding the persistence and metabolic transition of non-ionic pesticides in soils and their patterns of degradation.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea
| | - Ji-Hyock Yoo
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea
| | - Won-Tae Jeong
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55356, Republic of Korea.
| |
Collapse
|
2
|
Boonupara T, Udomkun P, Khan E, Kajitvichyanukul P. Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. TOXICS 2023; 11:858. [PMID: 37888709 PMCID: PMC10611335 DOI: 10.3390/toxics11100858] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
This critical review examines the release of pesticides from agricultural practices into the air, with a focus on volatilization, and the factors influencing their dispersion. The review delves into the effects of airborne pesticides on human health and their contribution to anthropogenic air pollution. It highlights the necessity of interdisciplinary research encompassing science, technology, public policy, and agricultural practices to effectively mitigate the risks associated with pesticide volatilization and spray dispersion. The text acknowledges the need for more research to understand the fate and transport of airborne pesticides, develop innovative application technologies, improve predictive modeling and risk assessment, and adopt sustainable pest management strategies. Robust policies and regulations, supported by education, training, research, and development, are crucial to ensuring the safe and sustainable use of pesticides for human health and the environment. By providing valuable insights, this review aids researchers and practitioners in devising effective and sustainable solutions for safeguarding human health and the environment from the hazards of airborne pesticides.
Collapse
Affiliation(s)
- Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| |
Collapse
|
3
|
C FC, Kamalesh T, Senthil Kumar P, Rangasamy G. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122114. [PMID: 37379877 DOI: 10.1016/j.envpol.2023.122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Organochlorine pesticides (OCPs) have been used in agriculture, increasing crop yields and representing a serious and persistent global contaminant that is harmful to the environment and human health. OCPs are typically bioaccumulative and persistent chemicals that can spread over long distances. The challenge is to reduce the impacts caused by OCPs, which can be achieved by treating OCPs in an appropriate soil and water environment. Therefore, this report summarizes the process of bioremediation with commercially available OCPs, considering their types, impacts, and characteristics in soil and water sources. The methods explained in this report were considered to be an effective and environmentally friendly technique because they result in the complete transformation of OCPs into a non-toxic end product. This report suggests that the bioremediation process can overcome the challenges and limitations of physical and chemical treatment for OCP removal. Advanced methods such as biosurfactants and genetically modified strains can be used to promote bioremediation of OCPs.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - T Kamalesh
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
4
|
Hao S, Li WL, Liu LY, Zhang ZF, Ma WL, Li YF. Spatial distribution and temporal trend of organochlorine pesticides in Chinese surface soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82152-82161. [PMID: 37318734 DOI: 10.1007/s11356-023-28198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Although organochlorine pesticides (OCPs) in the Stockholm Convention List were banned for a period of time, the residue of OCPs in environment was still detected recently. Therefore, the continuous environmental monitoring was necessary and important for the deep understanding on the temporal trend of environmental fate of OCPs. In this study, the national scale surface soil samples in 26 provinces of China in 2012 were collected, and 28 OCPs were analyzed. The mean concentrations (ng/g dw) of Σhexachlorocyclohexanes (HCHs), Σdichlorodiphenyltrichloroethane (DDTs), hexachlorobenzene (HCB), and hexachlorobutadiene (HCBD) were 2.47 ± 5.4, 4.29 ± 8.28, 3.33 ± 7.68, and 0.041 ± 0.097, respectively. The correlations between OCPs concentrations with temperature, latitude, and longitude were conducted for the deep study of the spatial distribution pattern of OCPs. It was found that HCHs, HCB, and HCBD are positively correlated with latitude and longitude; however, the correlations were not significant. HCHs followed the secondary distribution pattern, and DDTs followed both the primary and/or secondary distribution patterns. Except for HCB, other OCPs showed a gradual downward trend from 2005 to 2012, indicating the effectiveness of the phase-out of OCPs. In summary, the results of the study provided new insight into the related studies, which will help us to better understand the long-term environmental fate of OCPs on large scales.
Collapse
Affiliation(s)
- Shuai Hao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| |
Collapse
|
5
|
Hu Y, Liu H, Xing X, Lian J, Liu F. Occurrence and exposure risk assessment of organochlorine pesticides in two waterbird species from Honghu Lake Wetland, Central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1919-1931. [PMID: 35748971 DOI: 10.1007/s10653-022-01316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Monitoring and evaluating bird exposure to hazardous pollutants in wetlands are receiving considerable attention. In this study, the occurrence of 18 organochlorine pesticides (OCPs) in the muscle of bean geese (Anser fabalis) and common teals (Anas crecca) collected from Honghu Lake Wetland (HLW), Central China was studied. Additionally, an exposure risk assessment model was applied to obtain risk levels of OCPs to these birds through three oral routes (food intake, water drinking and soil ingestion). The results suggested that the most abundant OCPs detected in the muscle of waterbirds were DDTs (7.68-602 ng/g lipid weight), followed by HCHs (1.39-89.8 ng/g lipid weight). A significant difference (p < 0.05) existed between two species, but most of OCPs exhibited no statistically relationship with age or gender (p > 0.05). The compositional patterns of OCPs combined with ratios of certain metabolites to their parent compounds indicated that all OCPs in the HLW were largely from historical usage except heptachlor. The exposure risk assessment revealed that common teals with lighter weight had greater exposure risks than bean geese. Of the OCPs analyzed, DDTs could probably cause harm to target birds studied here. Exposure via food intake was identified to be significant while soil ingestion and water drinking contributed least, but they should still be concerned.
Collapse
Affiliation(s)
- Ying Hu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China.
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Wuhan, 430100, People's Republic of China.
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, People's Republic of China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Jingjing Lian
- College of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Feixiang Liu
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710027, People's Republic of China
| |
Collapse
|
6
|
Ren P, Wang M, Zheng H, Gao Z, Han Z, Liu Y, Cai M. Spatial distribution and risk assessment of conazole fungicides in surface seawater of the East China Sea. MARINE POLLUTION BULLETIN 2023; 189:114796. [PMID: 36898271 DOI: 10.1016/j.marpolbul.2023.114796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Conazole fungicides (CFs), the common-used pesticide in agriculture distributed widely in the environment. This research analyzed the occurrence, potential sources, and risks of eight CFs in the East China Sea surface seawater in the early summer of 2020. The total CF concentration ranged from 0.30 to 6.20 ng/L, with an average value of 1.64 ± 1.24 ng/L. Fenbuconazole, hexaconazole, and triadimenol were the major CFs that comprised >96 % of the total concentration. The Yangtze River was identified as the significant source of CFs from the coastal regions to the off-shore inputs. Ocean current was the first-order factor controlling the content and distribution of CFs in the East China Sea. Although risk assessment revealed CFs posed a low or no substantial risk to ecology and human health, long-term monitoring was also encouraged. This study provided a theoretical foundation for assessing CFs' pollution levels and potential risks in the East China Sea.
Collapse
Affiliation(s)
- Peng Ren
- Deep-Sea Multidisciplinary Research Center, Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Zhiwei Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Zheyi Han
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Yanguang Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China.
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
7
|
Wei L, Yu Z, Zhu C, Chen Y, Pei Z, Li Y, Yang R, Zhang Q, Jiang G. An evaluation of the impact of traffic on the distribution of PAHs and oxygenated PAHs in the soils and moss of the southeast Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160938. [PMID: 36526168 DOI: 10.1016/j.scitotenv.2022.160938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Contaminants in high-altitude mountains such as the Tibetan Plateau (TP) have attracted extensive attention due to their potential impact on fragile ecosystems. Rapid development of the economy and society has promoted pollution caused by local traffic emissions in the TP. Among the pollutants emitted by traffic, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) are of particular concern due to their high toxicity. The TP provides an environment to explore the degree and range of contribution for traffic-induced PAHs and OPAHs. In this study, soils and moss were collected at different altitudes and distances from the G318 highway in the southeast TP. The total concentrations of PAHs (∑16PAHs) and OPAHs (∑6OPAHs) in soils were in the range of 3.29-119 ng/g dry weight (dw) and 0.54-9.65 ng/g dw, respectively. ∑16PAH and ∑6OPAH concentrations decreased logarithmically with increasing distance from traffic. A significantly positive correlation between ∑16PAHs and altitude was found at sampling points closest to traffic. Dominant PAHs constituents in soil and moss included chrysene (CHR), benzo[g,h,i]perylene (BghiP), and benzo[b]fluoranthene (BbF); prevalent OPAH compounds were 9-fluorenone (9-FO) and 9,10-anthraquinone (ATQ). These compounds were related to characteristics of traffic emissions. The multiple diagnosis ratio and correlation analysis showed that exhaust emissions were the main source of the PAHs and OPAHs in the studied environment. PMF modeling quantification of the relative contribution of traffic emissions to PAHs in roadside soils was 45 % on average. The present study characterized the extent and range of traffic-induced PAH and OPAH emissions, providing valuable information for understanding the environmental behaviors and potential risks of traffic-related contaminants in high-altitude areas.
Collapse
Affiliation(s)
- Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chengcheng Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Wang L, Zhang ZF, Liu LY, Zhu FJ, Ma WL. National-scale monitoring of historic used organochlorine pesticides (OCPs) and current used pesticides (CUPs) in Chinese surface soil: Old topic and new story. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130285. [PMID: 36335903 DOI: 10.1016/j.jhazmat.2022.130285] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Along with the restriction and prohibition of historic used organochlorine pesticides (OCPs), current used pesticides (CUPs) were widely used as alternatives. In order to investigate the pollution characteristics of pesticides, the levels and spatial distributions of OCPs and CUPs in 154 surface soil across China were comprehensively compared. Totally, 107 target pesticides were screened, and 20 OCPs and 34 CUPs were detected. The numbers of co-occurred pesticides in single soil sample were from 17 to 36 indicating the diversity and complexity of pesticides pollution. The concentrations of OCPs in urban soils were higher than rural soils, while rural > urban for CUPs. Furthermore, obviously different spatial distribution patterns were found for OCPs and CUPs. For OCPs, the secondary distribution pattern was dominant. For CUPs, the primary distribution pattern was obviously observed due to their current extensive usage. In addition, higher concentrations of both CUPs and OCPs were accumulated in the Northeast China Plain due to long-range atmospheric transport and deposition. Along with the old topic of OCPs, the study pointed out the preliminary understanding of CUPs pollution characteristic in surface soil of China, which provided a new story with the deep understanding of their environmental fate in both China and the world.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Li Q, Xiao P, Shen D, Huang Y, Shi X, Li X, Liu Y. Level and risk assessment of selected polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and organochlorine pesticides in walnut and soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14849-14859. [PMID: 36161556 DOI: 10.1007/s11356-022-23158-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
It is unknown how hydrophobic organic contaminants (HOCs) are distributed and how they affect the environment in high-fat nuts and their planted soil. The profile of HOCs in walnut/soil system was investigated in this study. Polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) were found in walnuts at concentrations of 0.67, 127, and 116 μg/kg, respectively. The target hazard quotients (THQ) of 17 PCBs, 16 PAHs, and 21 OCPs from walnut consumption by human were 0.06, 0.01, and 0.11, respectively. The highest concentrations of HOC in the soil were found in Nap and toxaphene, with concentrations of 2580 and 902 μg/kg, respectively. Bioaccumulation factors (BAF) and biota-sediment accumulation factors (BSAF) in walnuts were ranged from <0.01 to 7.04 and <0.01 to 3.83, respectively. Concentrations of most individual HOCs in soil samples were significantly correlated with soil organic matter (SOM) (p < 0.01) and minerals (p < 0.01), with maximum correlation coefficients of 0.70 (OM-PCB81) and -0.84 (P-BaP). According to this study, high-fat walnuts do not have a high bioaccumulation of HOCs from soil, and the risk of consumption is within the safe range.
Collapse
Affiliation(s)
- Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, People's Republic of China
| | - Pengfei Xiao
- JiYang College of Zhejiang A&F University, Zhuji, 311800, People's Republic of China
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, People's Republic of China
| | - Yunmei Huang
- JiYang College of Zhejiang A&F University, Zhuji, 311800, People's Republic of China
| | - Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, People's Republic of China
| | - Xianbin Li
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, People's Republic of China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, People's Republic of China.
| |
Collapse
|
10
|
Zheng H, Ding Y, Xue Y, Xiao K, Zhu J, Liu Y, Cai M. Occurrence, seasonal variations, and eco-risk of currently using organochlorine pesticides in surface seawater of the East China Sea and Western Pacific Ocean. MARINE POLLUTION BULLETIN 2022; 185:114300. [PMID: 36330943 DOI: 10.1016/j.marpolbul.2022.114300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
We studied 19 targets currently using organochlorine pesticides (CUOCPs) from 98 samples in the Western Pacific Ocean and the East China Sea collected in 2019, 2020, and 2021. The samples were analyzed using a novel High-throat/High-volume Solid-Phase Extraction method. Eighteen individual CUOCPs were above the method detection limits. The levels of ∑19CUOCPs ranged from 0.13 to 17.80 ng/L, with an average of 3.13 ± 14.67 ng/L. Dicofol was the main pollutant in the Western Pacific Ocean, while Pyridaben dominated the East China Sea. In the summer, land-source input was the primary source in the Western Pacific Ocean and the East China Sea. Historical residues were the main source in the East China Sea in spring. In the summer, the ecological risk assessment results indicated a relatively low risk to the Western Pacific Ocean and the East China Sea.
Collapse
Affiliation(s)
- Hongyuan Zheng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Yunhao Ding
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yingang Xue
- School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Kaiyan Xiao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Jincai Zhu
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yanguang Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China.
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
11
|
Lee M, Lee S, Noh S, Park KS, Yu SM, Lee S, Do YS, Kim YH, Kwon M, Kim H, Park MK. Assessment of organochlorine pesticides in the atmosphere of South Korea: spatial distribution, seasonal variation, and sources. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:754. [PMID: 36083375 DOI: 10.1007/s10661-022-10335-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Organochlorine pesticides (OCPs) are widely used in certain countries. We determined atmospheric concentrations, distribution patterns, and seasonal variations of OCPs at four sites in South Korea for 1 year. Samples of 22 OCPs were collected using a high-volume air sampler, and measured via the isotope dilution method with HRGC/HRMS. In South Korea, pentachlorobenzene (PeCB), hexachlorocyclohexane (HCB), and endosulfan (EnSF) were dominant, accounting for > 87% of total OCPs. Spatial distributions showed significant differences and the highest levels were observed in Seosan (295.2 pg·m-3), indicating the compounding potential of diverse sources as Seosan has concentrated large-scale industrial complexes and agricultural activity (Seoul: 243.6 pg·m-3 > Jeju: 193.5 pg·m-3 > Baengnyeong: 178.2 pg·m-3). The isomeric ratios of OCPs in the South Korean atmosphere indicated that the dominant sources of HCB and dichlorodiphenyltrichloroethane were primarily used in the past; meanwhile, chlordane (CHL) and EnSFs were derived from recent material inputs. Seasonally, OCP concentrations largely peaked in summer with minimum values in winter. This apparent temperature dependence suggests the re-volatilization of accumulated chemicals into the atmosphere. Additionally, an air mass back trajectory indicated the influence of pollutants released from a reservoir through long-range atmospheric transport in the summer. In particular, restricted OCPs are primarily released into the atmosphere by inadvertent sources, such as industrial activities and volatilization from contaminated areas. Thus, severe OCP pollution in Korea is due to the mobile nature of the particles. These data can be useful for the continuous monitoring of long-range transported air pollutants that are transferred between countries.
Collapse
Affiliation(s)
- Myungsup Lee
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Sumin Lee
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Seam Noh
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Kwang-Su Park
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Seok Min Yu
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Seunghwa Lee
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Young-Sun Do
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Young Hee Kim
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Myunghee Kwon
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Hyunjeong Kim
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea.
| | - Min-Kyu Park
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea.
| |
Collapse
|
12
|
Organochlorine Pesticides in Karst Soil: Levels, Distribution, and Source Diagnosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111589. [PMID: 34770109 PMCID: PMC8582917 DOI: 10.3390/ijerph182111589] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Excessive reclamation and improper use of agrochemicals in karst areas leads to serious non-point source pollution, which is of great concern and needs to be controlled, since contaminants can easily pollute groundwater due to the thin patchy soil and developed karst structures. The occurrences of organochlorine pesticides (OCPs) in karst soil were investigated by analyzing 25 OCPs in the karst soils near the Three Gorges Dam, China. The total concentrations of OCPs ranged 161–43,100 (6410 ± 9620) pg/g, with the most abundant compounds being p,p′-DDT and mirex. The concentration differences between the orchard and vegetable field and between upstream and downstream presented the influences of land-use type and water transport on the OCP spatial distributions. Composition analysis indicated the possible fresh inputs of lindane, technical DDT, aldrin, endrin, mirex, and methoxychlor. Their illegal uses implied an insufficient agrochemical management system in undeveloped karst areas. Principal component analysis with multiple linear regression analysis characterized the dominant sources from current agricultural use and current veterinary use in the study area. OCPs in the soils might not pose significant cancer risk for the residents, but they need to be controlled due to their illegal uses and bioaccumulation effect via the food chain.
Collapse
|
13
|
Xu Y, Tian C, Nizzetto L, Zhang G. Role of low-latitude forests in modulating forest filter effect on a continental scale: Long-term simulation on PCB-153 in Chinese forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146285. [PMID: 33725596 DOI: 10.1016/j.scitotenv.2021.146285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Forests are important compartments influencing the environmental fate of persistent organic pollutants (POPs). To illustrate the effect of forests on the regional cycle of POPs, a level IV fugacity fate and transport model coupled with a detailed dynamic-forest module was applied to simulate the long-term variations of PCB-153 in China, where forest coverage accounts for approximately one fifth of land area. In the scenarios with forests, atmospheric outflow from China was 69% of that in the scenario without forests due to the enhanced storage in soil, degradation, and leaching. Previous studies regarded high-latitude areas, such as the polar region and boreal forests, as environments capable of reducing mobility of PCB-153, and they act as sinks of POPs. This modeling result suggests that tropical and subtropical forests may also play a similar role despite high temperatures favoring volatilization. Unlike boreal forest, the low-latitude forests may reduce the overall lifetime of PCB-153 in China due to enhanced degradation in warmer and moist soils of the tropical and subtropical area. Given that approximately half of the global forests are located in tropical and subtropical regions, they can be important environments influencing the global geochemical cycle and distribution of POPs, hence deserving more scientific attention by modeling and empirical studies.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Chongguo Tian
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway; RECETOX, Masarik University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Xiao K, Zhu N, Lu Z, Zheng H, Cui C, Gao Y, Gao Y, Meng X, Liu Y, Cai M. Distribution of eight organophosphorus pesticides and their oxides in surface water of the East China Sea based on high volume solid phase extraction method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116886. [PMID: 33743440 DOI: 10.1016/j.envpol.2021.116886] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/26/2023]
Abstract
In this study, we reported the occurrence of eight organophosphorus pesticides (OPPs) in the East China Sea. Forty samples were collected and analysed with a high volume solid phase extraction method (Hi-throat/Hi-volume SPE) in the early summer of 2020. All the target OPPs were detected in the surface water at one or more stations in the East China Sea, and the concentrations of ΣOPPs were in the range 0.0775-3.09 ng/L (mean: 0.862 ± 0.624 ng/L). Terbufos sulfone and fenthion were the main pollutants in this area, probably resulting from pesticide use in China and other countries. The off-shore input from coastal regions was suggested to be a major source of OPP pollution in the East China Sea, and the movement of ocean currents played an important role in their transportation because around 0.86 t OPPs passed through the Tsushima Strait from the East China Sea each month. An ecological risk assessment showed that these OPPs presented a high risk to species in the East China Sea, whereas they posed no health risk to humans under both the median and high exposure scenario.
Collapse
Affiliation(s)
- Kaiyan Xiao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Ningzheng Zhu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Zhibo Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hongyuan Zheng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Chao Cui
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China
| | - Yuan Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Yunze Gao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Xiangzhou Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Yanguang Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China.
| |
Collapse
|
15
|
da Silva KA, Nicola VB, Dudas RT, Demetrio WC, Maia LDS, Cunha L, Bartz MLC, Brown GG, Pasini A, Kille P, Ferreira NGC, de Oliveira CMR. Pesticides in a case study on no-tillage farming systems and surrounding forest patches in Brazil. Sci Rep 2021; 11:9839. [PMID: 33972553 PMCID: PMC8110586 DOI: 10.1038/s41598-021-88779-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
With the growing global concern on pesticide management, the relationship between its environmental recalcitrance, food security and human health has never been more relevant. Pesticides residues are known to cause significant environmental contamination. Here, we present a case study on long-term no-tillage farming systems in Brazil, where Glyphosate (GLY) has been applied for more than 35 years. GLY and its main breakdown product, aminomethylphosphonic acid (AMPA) were determined in topsoil (0-10 cm) samples from no-tillage fields and nearby subtropical secondary forests by high-performance liquid chromatography coupled with a fluorescence detector. In addition, the presence of carbamates, organochlorines, organophosphates and triazines were also screened for. GLY and AMPA were present in all soil samples, reaching values higher than those described for soils so far in the literature. A significant decrease for AMPA was observed only between the secondary forest and the farm's middle slope for site B. GLY and AMPA were observed respectively at peak concentrations of 66.38 and 26.03 mg/kg soil. GLY was strongly associated with forest soil properties, while AMPA associated more with no-tillage soil properties. Soil texture was a significant factor contributing to discrimination of the results as clay and sand contents affect GLY and AMPA retention in soils. This was the first study to report DDT and metabolites in consolidated no-tillage soils in Brazil (a pesticide fully banned since 2009). Based on human risk assessment conducted herein and the potential risk of GLY to local soil communities, this study offers a baseline for future studies on potential adverse effects on soil biota, and mechanistic studies.
Collapse
Affiliation(s)
- Karlo Alves da Silva
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
| | | | - Rafaela Tavares Dudas
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
| | - Wilian Carlo Demetrio
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
| | - Lilianne Dos Santos Maia
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
| | - Luis Cunha
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 4BD, Wales, UK
| | - Marie Luise Carolina Bartz
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - George Gardner Brown
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
- Embrapa Florestas, Colombo, Paraná, 83411-000, Brasil
| | - Amarildo Pasini
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, 86057-970, Brasil
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Nuno G C Ferreira
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK.
| | - Cíntia Mara Ribas de Oliveira
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil.
- Graduação em Biomedicina, Universidade Positivo, Curitiba, 81280-330, Brasil.
| |
Collapse
|
16
|
Amusa C, Rothman J, Odongo S, Matovu H, Ssebugere P, Baranga D, Sillanpää M. The endangered African Great Ape: Pesticide residues in soil and plants consumed by Mountain Gorillas (Gorilla beringei) in Bwindi Impenetrable National Park, East Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143692. [PMID: 33272601 DOI: 10.1016/j.scitotenv.2020.143692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Bwindi Impenetrable National Park situated southwest of Uganda is a biodiversity hotspot that is home to about half of the world's endangered mountain gorilla (Gorilla beringei). Given its ecological significance and mounting pressures from agricultural activities such as tea growing, continuous monitoring of the levels of chemical toxins like pesticides in the park and surrounding areas is needed for effective conservation strategies. Furthermore, persistent organochlorine pesticides (OCPs) like DDT were used in agricultural gardens and indoor spraying in Kanungu district between the 1950s and 80s. The focus of this study was to explore the possible exposure of mountain gorillas to OCPs and cypermethrin used by the farmers in the areas near the park. Data from our interviews revealed that glyphosate is the most widely used pesticide by the farmers in areas surrounding the park, followed by cypermethrin, and mancozeb. Samples of leaves from plants consumed by mountain gorillas along the forest edges of the park and surficial soils (15-20 cm depths) were collected from three sites (Ruhija, Nkuringo and Buhoma) and analysed for the presence of cypermethrin and OCPs residues. Concentrations of total (∑) DDTs and ∑endosulfans were up to 0.34 and 9.89 mg/kg dry weight (d.w), respectively in soil samples. Concentrations of ∑DDTs and ∑endosulfans in samples of leaves ranged from 0.67 to 1.38 mg/kg d.w (mean = 1.07 mg/kg d.w) and 0.9 to 2.71 mg/kg d.w (mean = 1.68 mg/kg d.w), respectively. Mean concentration of ∑DDTs in leaves exceeded the European pharmacopeia and United States pharmacopeia recommended maximum residue limit values for DDTs in medicinal plants (1.0 mg/kg). In addition, calculated hazard indices for silverbacks (36.35), females (57.54) and juveniles (77.04) suggested potential health risks to the mountain gorillas. o,p'-DDT/p,p'-DDT ratios (0.5-0.63) in samples of leaves confirmed recent input of dicofol-DDT type in Bwindi rainforest.
Collapse
Affiliation(s)
- Chemonges Amusa
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda; Uganda Wildlife Authority and Primate Conservation, Kampala, Uganda
| | - Jessica Rothman
- Department of Anthropology, and New York Consortium in Evolutionary Primatology, Hunter College of the City University of New York, New York, NY, USA
| | - Silver Odongo
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Henry Matovu
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P. O Box 166, Gulu, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda.
| | - Deborah Baranga
- Department of Zoology, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
17
|
Huang H, Li J, Zhang Y, Chen W, Ding Y, Chen W, Qi S. How persistent are POPs in remote areas? A case study of DDT degradation in the Qinghai-Tibet Plateau, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114574. [PMID: 33618471 DOI: 10.1016/j.envpol.2020.114574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) can undergo long-range atmospheric transport (LRAT) and deposit in remote areas. How persistent are POPs in remote areas? To answer this question, we measured two parent-DDTs and eight metabolites in soil and air along a transect in the Qinghai-Tibet Plateau, China, to quantitatively evaluate the degree of degradation of DDTs. DDTs were ubiquitous in soil and air with the total DDT concentrations (Σ10DDTs) ranging 37.7-70,100 pg g-1 dw and 3.4-175 pg m-3, respectively. The air-soil equilibrium status indicated that the forest/basin soil was a source for most DDTs, while the plateau soil was a sink receiving DDTs from the LRAT and photodegradation in the air (for metabolites). The metabolites accounted for avg. 64.1% of Σ10DDTs in soil, with avg. 93.2% from local degradation, implying the overall high degradation of DDTs. With the significant degradation, the continuous input via LRAT was deemed to be the main reason for the stable level (persistence) of POPs in the Qinghai-Tibet Plateau. Therefore, we emphasize the importance of source control for the risk management of POPs. POPs in the environment might decline rapidly due to a reduction in source input and significant degradation as indicated by our study.
Collapse
Affiliation(s)
- Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, China Academic of Sciences, Guangzhou, 510640, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
18
|
Kuang L, Hou Y, Huang F, Hong H, Sun H, Deng W, Lin H. Pesticide residues in breast milk and the associated risk assessment: A review focused on China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138412. [PMID: 32330708 DOI: 10.1016/j.scitotenv.2020.138412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
This review aims to provide an overview of studies on pesticide residues in breast milk in China and the related health risk to mother and infants. Results showed that the investigations of breast milk covered 22 provincial administrative regions of China. Beijing and some densely populated and economically developed areas have most publications. The study frequency was followed the order of DDTs>HCHs>HCB > ∑Drins,∑Chlordane. While the residue levels were ranked as DDTs, HCHs > ∑Drins>HCB > ∑Chlordane. The highest residue levels of DDTs and HCHs in breast milk were found in 1980s (~10,000 ng/g lipid), then experienced a sharp decrease in 1990s (~1000-2000 ng/g lipid). In 2000s and 2010s, DDTs, and HCHs residue still showed a decreasing trend. Spatially, people located in urban area, coastal areas and southern China tend to have higher pesticide residues as compared to rural area, inland area and northern China, respectively. Other factors such as dietary habit, living environment, the maternal age, the parity, body mass index, lactation period, menstruation characteristics as well as hormonal drug intake and infertility treatment will also affect the pesticide residues in breast milk of Chinese people. According to the estimated daily ingestion (EDI) of breast milk, the average health risk for infants were generally exceeded the acceptable level before 2006, while after that, most EDI values were within the standard. Body burden of pesticides in mother can also be evaluated by using the residue data in breast milk, but no relevant guidelines were available. Other knowledge gap included 1) for some provinces with large consumption of pesticides or located in remote and plateau areas, there are few/no studies available; 2) current study on pesticide residues in breast milk in China were only focused on organochlorine pesticides, research on current used pesticides (such as pyrethroids, organophosphorus, carbamate) were necessary in the future.
Collapse
Affiliation(s)
- Lihong Kuang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yizhong Hou
- Jinhua Center for Disease Control and Prevention, Jinhua 321000, PR China
| | - Fangqu Huang
- Jinhua Center for Disease Control and Prevention, Jinhua 321000, PR China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hongjie Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Wenjing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| |
Collapse
|
19
|
Zheng Q, Li J, Wang Y, Lin T, Xu Y, Zhong G, Bing H, Luo C, Zhang G. Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114139. [PMID: 32120253 DOI: 10.1016/j.envpol.2020.114139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
We investigated the levels and distributions of organochlorine pesticides (OCPs) in 159 background soil samples collected from 30 forested mountain sites across China. The sum of DDT was the most abundant OCP, with the concentrations of 0.197-207 ng/g and 0.033-122 ng/g in the O-horizon and A-horizon, respectively. High concentrations of OCPs usually occur near agricultural regions or high consumption areas. The spatial distribution was mainly influenced by the emission sources and soil total organic contents (TOC). The chiral compounds were generally nonracemic in the soils and showed preferential degradation of (-) o,p'- dichlorodiphenyltrichloroethane, (+) trans-chlordane, and (-) cis-chlordane in both the O- and A-horizons. The enantiomeric fraction (EF) distributions of chiral OCPs displayed no differences across the forest sites in the O-horizon or the A-horizon. Comparing the deviation of EFs from racemic (DEVrac = absolute value of 0.500 - EF) with environmental parameters, we found that DEVrac of cis-chlordane demonstrated a strong positive correlation with TOC (p < 0.05) and the C/N ratio (p < 0.01). This relationship suggests that these factors could affect the microbial activity and significantly impact the extent of enantioselective degradation of chiral compounds in the soils. Fresh and historical applications of DDT and historical chlordane and endosulfan uses may be prominent sources of OCP accumulation in Chinese forest soils.
Collapse
Affiliation(s)
- Qian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tian Lin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Haijian Bing
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Chunling Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
20
|
Luo Y, Sun J, Wang P, Li Y, Li H, Xiao K, Yang R, Zhang Q, Jiang G. Age dependence accumulation of organochlorine pesticides and PAHs in needles with different forest types, southeast Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137176. [PMID: 32059305 DOI: 10.1016/j.scitotenv.2020.137176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
In this study, organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in needle leaves with different ages were measured in three prevalent coniferous forests including spruce, fir and pinus in southeast Tibetan Plateau (TP) to investigate accumulation behavior of persistent organic pollutants (POPs) during entire growth cycle of needles. The accumulation concentration of POPs was higher in pinus and fir needles than in spruce needles. Concentrations for most of OCPs significantly increased with needle ages, especially dichlorodiphenyltrichloroethane (DDT) and its metabolites showed more remarkable increasing trend than hexachlorocyclohexane isomers (HCHs) and hexachlorobenzene (HCB) in the three tree species. However, age dependence accumulation of PAHs was not observed in most cases, possibly due to its easier degradation property and the influence by dramatic change of ambient atmospheric concentration of PAHs. The lipid normalized concentrations in needles exhibited similar accumulation pattern with that of dry weight basis. The controlling factors for concentration variation in needles were identified using multiple linear regression. The suitability of these needle species acting as potential passive sampler for atmospheric POPs was evaluated. The different-age needles could reflect atmospheric OCP concentrations in the past long-term trend. Findings of this study provide guidance in use of needle as passive samples for the background monitoring of the atmospheric contamination at remote and poorly accessible locations such as the TP.
Collapse
Affiliation(s)
- Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Honghua Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ke Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|