1
|
Shen X, Yang Y, Zhang S, He F, Liu Y. Response surface optimisation for corona discharge treatment of nicosulfuron in water. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 39581573 DOI: 10.1080/09593330.2024.2428444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
Sulfonylurea herbicides are the most widely used herbicides in the world, which are widely used in the prevention and control of weeds in rice, wheat, soybean and other fields. Long-term application will cause environmental pollution, and the use of plasma technology to degrade herbicides in water is expected to be an effective method to restore pollution. In this experiment, corona discharge plasma was used to treat nicosulfuron in water, and the response surface method was used to optimise the operating conditions of the single system of corona discharge treatment of nicosulfuron and the synergistic system of corona discharge treatment of nicosulfuron with the addition of persulfate. The results showed that the degradation rate of nicosulfuron was 75.08% after 10 min under the optimum operating condition of single system. Under the optimum operating conditions, the degradation rate of nicosulfuron after 10 min was 100%. The R2 and P values of the two system models were both greater than 9.3 and less than 0.01, and the reliability of the simulated degradation rate data was verified by experiments, which provided basic data for the future research on the use of low temperature plasma to degrade herbicides.
Collapse
Affiliation(s)
- Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Yuncui Yang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Siyu Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Fan He
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Yinxin Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Liu Q, Ouyang W, Yang X, He Y, Wu Z, Ostrikov KK. Plasma-microbubble treatment and sustainable agriculture application of diclofenac-contaminated wastewater. CHEMOSPHERE 2023; 334:138998. [PMID: 37211167 DOI: 10.1016/j.chemosphere.2023.138998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
The demand for efficient wastewater treatment is becoming increasingly urgent due to the rising threat of pharmaceutical residues in water. As a sustainable advanced oxidation process, cold plasma technology is a promising approach for water treatment. However, the adoption of the technology encounters several challenges, including the low treatment efficiency and the potentially unknown environmental impact. Here, microbubble generation was integrated with cold plasma system to enhance treatment of wastewater contaminated with diclofenac (DCF). The degradation efficiency depended on the discharge voltage, gas flow, initial concentration, and pH value. The best degradation efficiency was 90.9% after 45 min plasma-bubble treatment under the optimum process parameters. The hybrid plasma-bubble system exhibited strongly synergistic performance heralded by up to seven-times higher DCF removal rates than the two systems operated separately. The plasma-bubble treatment remains effective even after addition of SO42-, Cl-, CO32-, HCO3-, and humic acid (HA) as interfering background substances. The contributions of •O2-, O3, •OH, and H2O2 reactive species to the DCF degradation process were specified. The synergistic mechanisms for DCF degradation were deduced through the analysis of the degradation intermediates. Further, the plasma-bubble treated water was proven safe and effective to stimulate seed germination and plant growth for sustainable agriculture applications. Overall, these findings provide new insights and a feasible approach with a highly synergistic removal effect for the plasma-enhanced microbubble wastewater treatment, without generating secondary contaminants.
Collapse
Affiliation(s)
- Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wenchong Ouyang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xusheng Yang
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yuanyuan He
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, People's Republic of China; CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, People's Republic of China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia; Centre for Materials Science, Centre for Clean Energy Technologies and Practices, and Centre for Waste Free World, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| |
Collapse
|
3
|
He Y, Shen J, Alharbi NS, Chen C. Volatile organic compounds degradation by nonthermal plasma: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32123-32152. [PMID: 36710313 DOI: 10.1007/s11356-023-25524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) have posed a severe threat on both ecosystem and human health which thus have gained much attention in recent years. Nonthermal plasma (NTP) as an alternative to traditional methods has been employed to degrade VOC in the atmosphere and wastewater for its high removal efficiency (up to 100%), mild operating conditions, and environmental friendliness. This review outlined the principles of NTP production and the applications on VOC removal in different kinds of reactors, like single/double dielectric barrier discharge, surface discharge, and gliding arc discharge reactors. The combination of NTP with catalysts/oxidants was also applied for VOC degradation to further promote the energy efficiency. Further, detailed explanations were given of the effect of various important factors including input/reactor/external conditions on VOC degradation performance. The reactive species (e.g., high-energy electrons, HO·, O·, N2+, Ar+, O3, H2O2) generated in NTP discharge process have played crucial roles in decomposing VOC molecules; therefore, their variation under different parameter conditions along with the reaction mechanisms involved in these NTP technologies was emphatically explained. Finally, a conclusion of the NTP technologies was presented, and special attention was paid to future challenges for NTP technologies in VOC treatment to stimulate the advances in this topic.
Collapse
Affiliation(s)
- Yuan He
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230000, People's Republic of China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, People's Republic of China
| | - Njud S Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Changlun Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, People's Republic of China.
| |
Collapse
|
4
|
Shen T, Wang X, Xu P, Yang C, Li J, Wang P, Zhang G. Effect of dielectric barrier discharge plasma on persulfate activation for rapid degradation of atrazine: Optimization, mechanism and energy consumption. ENVIRONMENTAL RESEARCH 2022; 212:113287. [PMID: 35483407 DOI: 10.1016/j.envres.2022.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Dielectric barrier discharge plasma (DBDP) is an emerging and promising advanced oxidation process (AOP) for wastewater treatment. After investigating the effect of input voltage, O3 (generated by dielectric barrier discharge), and peroxydisulfate (PDS) dosage, the DBDPO3/PDS system was established. With the assistance of PDS, the atrazine (ATZ) removal efficiency increased from 69.67% to 82.46% within 25 min. Synergistic effect calculation suggests that there were markedly synergies between DBDP, O3, and PDS. Under the effect of SO4-•, the total organic carbon (TOC) removal and dechlorination efficiency were significantly improved. In addition, the DBDPO3/PDS system maintained the ATZ removal efficiency at a high level over a wide range of initial pH values. According to quenching experiments and electron paramagnetic resonance (EPR) detection, the dominant radical for ATZ degradation in the DBDPO3/PDS system was HO•. A possible degradation pathway of ATZ was proposed based on density functional theory (DFT) analysis, quadrupole-time of flight-liquid chromatography/mass spectrometry (Q-TOF-LC/MS) results, and related literature. The acute toxicity to aquatic minnows and the developmental toxicity of intermediate products prediction confirmed that the DBDPO3/PDS system could effectively reduce ATZ toxicity. The electrical energy per order (EEO) was 7.10 kWh m-3 order-1 illustrating that the DBDPO3/PDS was a more energy-economic system than other energy-intensive processing technologies.
Collapse
Affiliation(s)
- Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaojing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chunyan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jiaqin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Guangshan Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, PR China
| |
Collapse
|
5
|
You Y, Huang S, He Z. Activation of persulfate for degradation of sodium dodecyl sulfate by a hybrid catalyst hematite/cuprous sulfide with enhanced Fe III/Fe II redox cycling. CHEMOSPHERE 2022; 295:133839. [PMID: 35122824 DOI: 10.1016/j.chemosphere.2022.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Surfactants are recalcitrant compounds that require advanced treatment for their degradation. Heterogeneous advanced oxidation processes (AOPs) using iron-based catalysts can be a promising method for surfactant degradation. The acceleration of the FeIII/FeII redox cycling is the key to enhance the catalytic degradation. Herein, a hybrid catalyst composed of α-Fe2O3 and Cu2S was synthesized to improve the reduction of FeIII in a heterogeneous persulfate-AOP system. The results of XRD, Raman and TEM demonstrated the successful preparation of the hybrid catalyst. Because of the optimized FeII regeneration, the AOP containing the catalyst FC75 achieved 100.0% removal of sodium dodecyl sulfate (SDS) in a neutral aquatic environment, significantly higher than 22.9 ± 2.4% with pure α-Fe2O3 or 39.6 ± 2.5% with pure Cu2S. The catalyst FC75 demonstrated effective SDS removal in the recycling test (82.7 ± 7.0% after six recycling test) and in actual wastewater (84.4 ± 4.5%). The regeneration of FeII was confirmed by the increased proportion of FeII from 39.5% in the fresh catalyst to 42.6% in the used catalyst. The main active species was revealed to be sulfate radicals under an acidic condition and shifted to hydroxyl radicals under a basic condition. In the hybrid catalyst, α-Fe2O3 provided FeII to activate persulfate to radicals, with an oxidation product of FeIII, which was then reduced to FeII by CuI provided by Cu2S, coupling with the oxidation of CuI to CuII. The S element in Cu2S could directly or indirectly facilitate the FeIII/FeII redox cycling as an electron donor. Those results have demonstrated that the developed hybrid catalyst is able to promote FeII regeneration for effective SDS removal.
Collapse
Affiliation(s)
- Yingying You
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Phenol removal kinetics from synthetic wastewater by activation of persulfate using a catalyst generated from shipping ports sludge. CHEMOSPHERE 2021; 283:131265. [PMID: 34182645 DOI: 10.1016/j.chemosphere.2021.131265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Disposal sludges from shipping docks contain elements that have the potential to catalyze the desired treatment process. The current work was designed to decompose phenol from wastewater by activation peroxymonosulfate (PMS) using a catalyst made from sea sediments (at 400 °C for 3 h). The catalyst had a crystalline form and contained metal oxides. The parameters of pH (3-9), catalyst dose (0-80 mg/L), phenol concentration (50-250 mg/L), and PMS dose (0-250 mg/L) were tested to specify the favorable phenol removal. The phenol removal of 99% in the waste sludge catalyst/PMS system was achieved at pH 5, catalyst quantity of 30 mg/L, phenol content of 50 mg/L, PMS dose of 150 mg/L, and reaction time of 150 min. From the results, it was implied that the pH factor was more important in removing phenol with the studied system than other factors. By-products and phenol decomposition pathways were also provided. The results showed that the sea sediment catalyst/PMS system is a vital alternative for removing phenol from wastewater medium.
Collapse
Affiliation(s)
- Feyzollah Khoshtinat
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Seyedenayat Hashemi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
7
|
Wang Q, Zhang A, Li P, Héroux P, Zhang H, Yu X, Liu Y. Degradation of aqueous atrazine using persulfate activated by electrochemical plasma coupling with microbubbles: removal mechanisms and potential applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124087. [PMID: 33265066 DOI: 10.1016/j.jhazmat.2020.124087] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 06/12/2023]
Abstract
Persulfate (PS) activated by dielectric barrier discharge (DBD) integrated with microbubbles (MBs) was designed to decompose atrazine (ATZ) from aqueous solutions. The degradation efficiency reached 89% at a discharge power of 85W, a PS concentration of 1mM, and a air flow rate of 30mL/min after 75min treatment. Heat caused by DBD favoured ATZ removal. Besides, the effect of PS dosage, discharge power and initial pH values on ATZ removal was evaluated. The calculated energy yield revealed that it was economical and promising to treat 1L of ATZ-wastewaters. The existence of SO42-, Cl-, CO32- and HCO3- lead to negative effects, while positive effect was observed when the presence of MBs and humic acid. The identification results of radicals and degradation intermediates suggested that multiple synergistic effects (such as heat, eaq- and H•) activated PS, and 1O2/reactive nitrogen species, •OH and SO4-• with contributions of 18%, 26%, and 29%, were main species attacking ATZ. ATZ degradation pathways including olefination, alkylic-oxidation, dealkylation, and dechlorination were proposed. An environment-friendly and a novel method for enhancing the PS-activation and ATZ-decomposition was provided, which fully utilised the electric-chemical conversion of DBD and high mass transfer efficiency of MBs.
Collapse
Affiliation(s)
- Qiancheng Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pan Li
- School of Environmental Science and Engineering, State Key Laboratory of Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xin Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Liang JP, Zhou XF, Zhao ZL, Yang DZ, Wang WC. Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111539. [PMID: 33157465 DOI: 10.1016/j.jenvman.2020.111539] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/30/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The persulfate activation by nanosecond pulsed gas-liquid discharge (NPG-LD) is employed to degrade the trimethoprim (TMP) in water. The results show that persulfate addition enhances the degradation of TMP by NPG-LD through an obvious synergetic effect. With treatment time of 50 min, the high removal efficiency and energy yield reach 94.6% and 0.57 gkWh-1 in air NPG-LD with the addition of persulfate, respectively, which is 13.5% and 0.09 gkWh-1 higher than that in solo air NPG-LD, respectively. Correspondingly, the calculated synergetic factor achieves 1.62, indicating the synergetic effect is established. The activation mechanism of persulfate by NPG-LD is analyzed by the measurement of reactive species and the effects of radical scavenger addition on TMP removal. It is found that the synergetic effect between NPG-LD and persulfate is attributed to the increased production of OH, H2O2, and . Besides, the TMP degradation by NPG-LD and persulfate synergetic system is influenced by discharge working gas, pulse voltage, addition dosage of persulfate, initial TMP concentration, and initial pH value. Subsequently, the degradation pathway of TMP is analyzed using LC-MS/MS.
Collapse
Affiliation(s)
- Jian-Ping Liang
- Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian, 116024, China
| | - Xiong-Feng Zhou
- Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian, 116024, China
| | - Zi-Lu Zhao
- Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian, 116024, China
| | - De-Zheng Yang
- Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian, 116024, China
| | - Wen-Chun Wang
- Key Lab of Materials Modification (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
| |
Collapse
|
9
|
Fan J, Wu H, Liu R, Meng L, Sun Y. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2522-2548. [PMID: 33105014 DOI: 10.1007/s11356-020-11222-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Discharge plasma technology is a new advanced oxidation technology for water treatment, which includes the effects of free radical oxidation, high energy electron radiation, ultraviolet light hydrolysis, and pyrolysis. In order to improve the energy efficiency in the plasma discharge processes, many efforts have been made to combine catalysts with discharge plasma technology. Some heterogeneous catalysts (e.g., activated carbon, zeolite, TiO2) and homogeneous catalysts (e.g., Fe2+/Fe3+, etc.) have been used to enhance the removal of pollutants by discharge plasma. In addition, some reagents of in situ chemical oxidation (ISCO) such as persulfate and percarbonate are also discussed. This article introduces the research progress of the combined systems of discharge plasma and catalysts/oxidants, and explains the different reaction mechanisms. In addition, physical and chemical changes in the plasma catalytic oxidation system, such as the effect of the discharge process on the catalyst, and the changes in the discharge state and solution conditions caused by the catalysts/oxidants, were also investigated. At the same time, the potential advantages of this system in the treatment of different organic wastewater were briefly reviewed, covering the degradation of phenolic pollutants, dyes, and pharmaceuticals and personal care products. Finally, some suggestions for future water treatment technology of discharge plasma are put forward. This review aims to provide researchers with a deeper understanding of plasma catalytic oxidation system and looks forward to further development of its application in water treatment.
Collapse
Affiliation(s)
- Jiawei Fan
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Ruoyu Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Liyuan Meng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
10
|
Liu Y, Zuo P, Wang F, Men J, Wang R, Jiao W, Liu Y. Covalent immobilization of phthalocyanine on graphene oxide for the degradation of phenol. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|