1
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Razekenari AM, Fereidouni AE, Movahedinia A, Neyshabouri EZ. Impacts of sublethal concentrations of 17 α-ethinylestradiol (EE2) on growth, reproductive performance, and survival in red cherry shrimp Neocaridina davidi (Crustacea, Atyidae) during consecutive spawnings. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106519. [PMID: 37061420 DOI: 10.1016/j.aquatox.2023.106519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
This study was conducted for the first time to investigate the long-term impacts of sublethal concentrations of 17 α-ethinylestradiol (EE2) on growth, survival, and reproductive performances in a model shrimp, the red cherry (Neocaridina davidi), females during five successive spawning steps for 7.5 months. Females were distributed in eighteen aquariums and continuously exposed to EE2 at six nominal concentrations of 0 (control), 0.02, 0.2, 2, 20, and 200 μg/L. Growth indices increased up to 0.2 μg/L and then sharply declined up to 200 μg/L. Most reproductive indices significantly decreased at levels > 0.02-0.2 μg/L with increasing EE2 levels. The highest absolute, relative, and actual fecundity values were recorded in the control, with the lowest value at 200 μg/L. With increasing EE2 levels, mean egg volume showed an increasing trend from the third spawning event onwards. Except for the time required to reach the first spawning, inter-spawning intervals considerably decreased with increasing EE2 levels at > 0.2 μg/L, especially from the third spawning stage onwards. Survival of exposed females significantly decreased with increasing EE2 levels. Unlike the body size, the juvenile's survival rates in all exposed treatments were considerably lower than the control. Females at concentrations 0.02-0.2 μg/L gained more body weight and length but produced fewer eggs with lower hatching percentages during five consecutive spawns. The results suggest that EE2 depending on the concentrations can cause unbalanced growth, reduce reproductive performances, especially from the third stage of spawning onwards, and reduce survival rates in brooders and subsequent offspring. In terms of growth, survival, and reproductive indices over successive spawns in ecotoxicology studies, the concentrations of 0.02-0.2 μg/L can be considered as chronic levels, but higher levels may have detrimental effects.
Collapse
Affiliation(s)
- Asiyeh Mohammadian Razekenari
- Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Abolghasem Esmaeili Fereidouni
- Faculty of Animal Sciences and Fisheries, Fisheries Department, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
| | - Abdolali Movahedinia
- Faculty of Marine and Oceanic Sciences, University of Mazandaran, Mazandaran, Iran
| | - Ebrahim Zabihi Neyshabouri
- Faculty of Medical Sciences, Pharmacological and Toxicological Educational Group, Babol University of Medical Sciences, Babol University, Babol, Iran
| |
Collapse
|
3
|
Ganguly RK, Al-Helal MA, Chakraborty SK. Role of bioactive xenobiotics towards reproductive potential of Odontotermes longignathus through in silico study: An amalgamation of ecoinformatics and ecotechnological insights of termite mounds from a tropical forest, India. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113275. [PMID: 35131584 DOI: 10.1016/j.ecoenv.2022.113275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/09/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The present research study has evaluated the roles of different naturally occurring compounds in termite mounds of Odontotermes longignathus (GenBank Id: MZ542727.1) which facilitate to promote higher population growth of termites and subsequent biodegradation. The study has also monitored the change in physicochemical parameters along with the trend of biodegradation of complex organic carbon-based compounds like lignin, polysaccharides etc. and nitrogenous compounds from two different types of termite mounds such as developing (T1) and developed (T2) mounds. The GC MS profiling of mound samples have revealed the occurrence of different humic acids like organic materials in both T1 and T2 mound samples. Both the termite mounds have demonstrated a high population density as T1 (23.67 ± 1.56) individuals and T2 (43.51 ± 2.36) individuals per 0.1 kg of mound materials. Such observations have prompted to undertake molecular docking experiments which revealed that different molecules interact at low binding affinity with hormone receptors involved in moulting, spermatogenesis and oogenesis of termite like Adamantane carboxylate (EcR: -7.6 Kcal/mol; BTB-KLHL10: -6.2 Kcal/mol; USP-LBD: -7.3 Kcal/mol; VgR: -6.8 Kcal/mol), Benzene dicarboxylic acid (EcR: -5.5 Kcal/mol; BTB-KLHL10: -5.1 Kcal/mol; USP-LBD: -5.4 Kcal/mol; VgR: -5.6 Kcal/mol), Hexadecanol (EcR: -6.0 Kcal/mol; BTB-KLHL10: -4.4 Kcal/mol; USP-LBD: -6.9 Kcal/mol; VgR: -6.0 Kcal/mol), oxirane (EcR: -5.3 Kcal/mol; BTB-KLHL10: -4.9 Kcal/mol; USP-LBD: -5.2 Kcal/mol; VgR: -5.3 Kcal/mol) and tocopherol (EcR: -8.0 Kcal/mol; BTB-KLHL10: -5.4 Kcal/mol; USP-LBD: -7.6 Kcal/mol; VgR: -7.0 Kcal/mol). Such spontaneous ligand binding phenomenon coupled with high population density of termites have established the significance of different bioactive xenobiotics in achieving high reproductive potential of termites which in turn facilitate the process of biodegradation and enhance the nutrient enrichment in the soils of tropical deciduous forest.
Collapse
Affiliation(s)
- Ram Kumar Ganguly
- Department of Zoology, Vidyasagar university, Midnapore 721102, West Bengal, India.
| | - Md Abdullah Al-Helal
- Department of Zoology, Vidyasagar university, Midnapore 721102, West Bengal, India
| | | |
Collapse
|
4
|
Schmid S, Song Y, Tollefsen KE. AOP Report: Inhibition of Chitin Synthase 1 Leading to Increased Mortality in Arthropods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2112-2120. [PMID: 33818824 DOI: 10.1002/etc.5058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 05/22/2023]
Abstract
Arthropods (including insects, crustaceans, and arachnids) rely on the synthesis of chitin to complete their life cycles (Merzendorfer 2011). The highly conserved chitin synthetic process and the absence of this process in vertebrates make it an exploitable target for pest management and veterinary medicines (Merzendorfer 2013; Junquera et al. 2019). Susceptible, nontarget organisms, such as insects and aquatic invertebrates, exposed to chitin synthesis inhibitors may suffer population declines, which may have a negative impact on ecosystems and associated services. Hence, it is important to properly identify, prioritize, and regulate relevant chemicals posing potential hazards to nontarget arthropods. The need for a more cost-efficient and mechanistic approach in risk assessment has been clearly evident and triggered the development of the adverse outcome pathway (AOP) framework (Ankley et al. 2010). An AOP links a molecular initiating event (MIE) through key events (KEs) to an adverse outcome. The mechanistic understanding of the underlying toxicological processes leading to a regulation-relevant adverse outcome is necessary for the utilization of new approach methodologies (NAMs) and efficient coverage of wider chemical and taxonomic domains. In the last decade, the AOP framework has gained traction and expanded within the (eco)toxicological research community. However, there exists a lack of mature invertebrate AOPs describing molting defect-associated mortality triggered by direct inhibition of relevant enzymes in the chitin biosynthetic pathway (chitin synthesis inhibitors) or interference with associated endocrine systems by environmental chemicals (endocrine disruptors). Arthropods undergo molting to grow and reproduce (Heming 2018). This process is comprised of the synthesis of a new exoskeleton, followed by the exuviation of the old exoskeleton (Reynolds 1987). The arthropod exoskeleton (cuticle) can be divided into 2 layers, the thin and nonchitinous epicuticle, which is the outermost layer of the cuticle, and the underlying chitinous procuticle. A single layer of epithelial cells is responsible for the synthesis and secretion of both cuticular layers (Neville 1975). The cuticle protects arthropods from predators and desiccation, acts as a physical barrier against pathogens, and allows for locomotion by providing support for muscular function (Vincent and Wegst 2004). Because the procuticle mainly consists of chitin microfibrils embedded in a matrix of cuticular proteins supplemented by lipids and minerals in insects (Muthukrishnan et al. 2012) and crustaceans (Cribb et al. 2009; Nagasawa 2012), chitin is a determinant factor for the appropriate composition of the cuticle and successful molting (Cohen 2001). A detailed overview of the endocrine mechanisms regulating chitin synthesis is given in Supplemental Data, Figure S1. The shedding of the old exoskeleton in insects is mediated by a sequence of distinct muscular contractions, the ecdysis motor program (EMP; Ayali 2009; Song et al. 2017a). Like the expression of chitin synthase isoform 1 (CHS-1), the expression of peptide hormones regulating the EMP is also controlled by ecdysteroids (Antoniewski et al. 1993; Gagou et al. 2002; Ayali 2009). Cuticular chitin is polymerized from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by the transmembrane enzyme CHS-1, which is localized in the epithelial plasma membrane in insects (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Because crustaceans are also dependent on the synthesis of chitin, the underlying mechanisms are believed to be similar, although less is known about different CHS isoforms and their localization (Rocha et al. 2012; Qian et al. 2014; Uddowla et al. 2014; Harðardóttir et al. 2019). Disruption of either chitin synthesis or the upstream endocrine pathways can lead to lethal molting disruption (Arakawa et al. 2008; Merzendorfer et al. 2012; Song et al. 2017a, 2017b). In the case of chitin synthesis inhibition, molting disruption can be referred to as "premature molting." If ecdysis cannot be completed because of decreased chitin synthesis, the organism may not successfully molt. Even if ecdysis can be completed on inhibition of chitin synthesis, the organism may not survive because of the poor integrity of the new cuticle. These effects are observed in arthropods following molting, which fail to survive subsequent molts (Arakawa et al. 2008; Chen et al. 2008) or animals being stuck in their exuviae (Wang et al. 2019) and ultimately dying as a result of insufficient food or oxygen intake (Camp et al. 2014; Song et al. 2017a). The term "premature molting" is used to differentiate from the term "incomplete ecdysis," which describes inhibition of ecdysis on a behavioral level, namely through reduction of the EMP (Song et al. 2017a). The present AOP describes molting-associated mortality through direct inhibition of the enzyme CHS-1. It expands the small but increasing number of invertebrate AOPs that have relevance to arthropods, the largest phylum within the animal kingdom (Bar-On et al. 2018). The development of this AOP will be useful in further research and regulatory initiatives related to assessment of CHS inhibitors and identification of critical knowledge gaps and may suggest new strategies for ecotoxicity testing efforts. Environ Toxicol Chem 2021;40:2112-2120. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Simon Schmid
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| | - Knut Erik Tollefsen
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Knigge T, LeBlanc GA, Ford AT. A Crab Is Not a Fish: Unique Aspects of the Crustacean Endocrine System and Considerations for Endocrine Toxicology. Front Endocrinol (Lausanne) 2021; 12:587608. [PMID: 33737907 PMCID: PMC7961072 DOI: 10.3389/fendo.2021.587608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Crustaceans-and arthropods in general-exhibit many unique aspects to their physiology. These include the requirement to moult (ecdysis) in order to grow and reproduce, the ability to change color, and multiple strategies for sexual differentiation. Accordingly, the endocrine regulation of these processes involves hormones, receptors, and enzymes that differ from those utilized by vertebrates and other non-arthropod invertebrates. As a result, environmental chemicals known to disrupt endocrine processes in vertebrates are often not endocrine disruptors in crustaceans; while, chemicals that disrupt endocrine processes in crustaceans are often not endocrine disruptors in vertebrates. In this review, we present an overview of the evolution of the endocrine system of crustaceans, highlight endocrine endpoints known to be a target of disruption by chemicals, and identify other components of endocrine signaling that may prove to be targets of disruption. This review highlights that crustaceans need to be evaluated for endocrine disruption with consideration of their unique endocrine system and not with consideration of the endocrine system of vertebrates.
Collapse
Affiliation(s)
- Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, Le Havre, France
- *Correspondence: Thomas Knigge,
| | - Gerald A. LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Alex T. Ford
- School of Biological Sciences, Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
6
|
Mellor C, Tollefsen K, LaLone C, Cronin M, Firman J. In Silico Identification of Chemicals Capable of Binding to the Ecdysone Receptor. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1438-1450. [PMID: 32335943 PMCID: PMC7781155 DOI: 10.1002/etc.4733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 04/22/2020] [Indexed: 05/30/2023]
Abstract
The process of molting, known alternatively as ecdysis, is a feature integral in the life cycles of species across the arthropod phylum. Regulation occurs as a function of the interaction of ecdysteroid hormones with the arthropod nuclear ecdysone receptor-a process preceding the triggering of a series of downstream events constituting an endocrine signaling pathway highly conserved throughout environmentally prevalent insect, crustacean, and myriapod organisms. Inappropriate ecdysone receptor binding and activation forms the essential molecular initiating event within possible adverse outcome pathways relating abnormal molting to mortality in arthropods. Definition of the characteristics of chemicals liable to stimulate such activity has the potential to be of great utility in mitigation of hazards posed toward vulnerable species. Thus the aim of the present study was to develop a series of rule-sets, derived from the key structural and physicochemical features associated with identified ecdysone receptor ligands, enabling construction of Konstanz Information Miner (KNIME) workflows permitting the flagging of compounds predisposed to binding at the site. Data describing the activities of 555 distinct chemicals were recovered from a variety of assays across 10 insect species, allowing for formulation of KNIME screens for potential binding activity at the molecular initiating event and adverse outcome level of biological organization. Environ Toxicol Chem 2020;39:1438-1450. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- C.L. Mellor
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, Lancashire, England
| | - K.E. Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - C. LaLone
- US Environmental Protection Agency (EPA), Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd. Duluth, MN, USA
| | - M.T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - J.W. Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| |
Collapse
|