1
|
Caballero-Mejía B, Moliner A, Escolástico C, Hontoria C, Mariscal-Sancho I, Pérez-Esteban J. Use of magnetite nanoparticles and magnetic separation for the removal of metal(loid)s from contaminated mine soils. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137081. [PMID: 39787850 DOI: 10.1016/j.jhazmat.2024.137081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Magnetite nanoparticles have been successfully used for removal and immobilization of contaminants in water, yet their application in soils combined with in situ magnetic separation remains unexplored. We evaluated the effectiveness and optimal conditions for using magnetite nanoparticles combined with magnetic separation to remove metal(loid)s from contaminated mine soils. Soil samples were incubated (15, 45 days) with varying doses of magnetite (0, 25, 50 g kg⁻¹) and moisture (dry, field capacity) and separated using electromagnet or permanent magnet. This technique achieved up to 44 % As, 65 % Cd, 60 % Cu, 47 % Fe, 40 % Mn, 65 % Pb, and 62 % Zn removal, leaving minimal residual magnetite in the soil. These high removal efficiencies were attributed to the nanoparticles' magnetic properties, adsorption capacity and ability to form aggregates with soil particles. Optimal conditions were 25 g kg⁻¹ of magnetite incubated for 45 days at field capacity and separated by the electromagnet. Higher doses (50 g kg⁻¹) offered minimal improvement at increased costs. The combined use of magnetite nanoparticles and in situ magnetic separation demonstrated a low-impact and cost-effective method for reducing metal(loid) concentrations to levels that facilitate subsequent soil remediation strategies.
Collapse
Affiliation(s)
- Bibiana Caballero-Mejía
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain; Universidad Nacional de Colombia (Medellín), Calle 59A No. 63-20, Medellín 050034, Colombia.
| | - Ana Moliner
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain.
| | - Consuelo Escolástico
- Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain.
| | - Chiquinquirá Hontoria
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain.
| | - Ignacio Mariscal-Sancho
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain.
| | - Javier Pérez-Esteban
- Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain.
| |
Collapse
|
2
|
Vicente L, Alvarenga P, Peña D, Fernández D, Albarrán Á, Rato-Nunes JM, López-Piñeiro A. Controlling As, Cd, and Pb bioaccumulation in rice under different levels of alternate wetting and drying irrigation with biochar amendment: A 3-year field study. CHEMOSPHERE 2025; 372:144114. [PMID: 39827621 DOI: 10.1016/j.chemosphere.2025.144114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/07/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
One challenging task to produce rice that comply with the increasing demanding regulations, is to reduce, simultaneously, grain bioaccumulation of As, Cd, and Pb. A 3-year field experiment was conducted in a Mediterranean environment, to evaluate the effects on As, Cd, and Pb bioaccumulation in rice grain, of the adoption of two levels of alternate wetting and drying (AWD) irrigation conditions: moderate and intensive (reflooding at -20 kPa and -70 kPa soil matric water potential, respectively), relative to the traditional permanent flood irrigation. Plots were prepared with or without a one-time holm oak biochar application (35 Mg ha-1), in the first year of the study. Arsenic bioaccumulation decreased in rice grain in the AWD systems, both total and inorganic (AsInorg), with the lower values reached in the intensive AWD irrigation (0.131-0.151 mg kg-1 dry weight), when the drying conditions were more intense. For As, biochar contributed to a further reduction in the bioaccumulation in the first two years but lost its efficacy with the field aging after three years of its application. However, the transition to AWD irrigation led to a significant increase in Cd bioaccumulation in rice grain (21-fold increase in the more intensive system, whose values reached up to 0.127 mg kg-1), which can be counteracted by biochar application, to values statistically similar to those of permanent flooding. Contrariwise, the effects on Pb bioaccumulation were not so significant, but decreased with the transition to ADW irrigation, and with biochar application, relatively to the non-amended counterparts. Therefore, the implementation of intensive AWD with biochar represents a potentially fruitful strategy to enhance food safety of rice production, controlling, simultaneously, As, Cd, and Pb bioaccumulation. Nevertheless, new approaches need to be developed to attend the limits established for AsInorg to produce food for infants, even in uncontaminated soils.
Collapse
Affiliation(s)
- Luis Vicente
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas s/n, Badajoz, 06071, Spain
| | - Paula Alvarenga
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal.
| | - David Peña
- Área de Edafología y Química Agrícola, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, Badajoz, 06007, Spain
| | - Damián Fernández
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, Badajoz, 06007, Spain
| | - Ángel Albarrán
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, Badajoz, 06007, Spain
| | - José Manuel Rato-Nunes
- Instituto Politécnico de Portalegre, Escola Superior Biociencias de Elvas, Avenida 14 de Janeiro nº21, Elvas, 7350-092, Portugal
| | - Antonio López-Piñeiro
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas s/n, Badajoz, 06071, Spain
| |
Collapse
|
3
|
Díaz AM, Baragaño D, Menéndez-Aguado JM, Norén A, Karlfeldt Fedje K, Espín E, Gallego JR. Enhanced remediation of organotin compounds and metal(loid)s in polluted sediments: Chemical stabilization with mining-wastes and nZVI versus physical soil washing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123602. [PMID: 39667335 DOI: 10.1016/j.jenvman.2024.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Here we describe two innovative approaches for remediating sediments contaminated with organotin compounds (OTCs, mainly TBT) and metal(loid)s. The first involves chemical stabilization through amendments with nanoscale zero-valent iron (nZVI), dunite mining waste, and coal tailings, materials that have not been previously studied for OTC remediation. The second focuses on physical soil washing, using grain-size separation and magnetic separation to isolate the most polluted fractions, thereby reducing the volume of contaminated material destined for landfills. The results for the first approach indicated that OTC degradation occurred mainly through nZVI application, with concurrent immobilization of As and mobilization of Cu. Furthermore, combining nZVI with coal tailings enhanced OTC degradation whereas dunite mining waste effectively immobilized Zn. In turn, in the second approach, grain-size separation efficiently removed coarse material (>500 μm) with low pollutant concentrations. Subsequent magnetic separation selectively concentrated less than 5% of the initial volume of sediment in a magnetic fraction that showed the highest contaminant content. Therefore, 95% of material revealed lower contaminant concentrations than the feed material. These findings highlight the potential of combining physical soil washing, which significantly reduces the volume of contaminated sediments, with chemical stabilization, which can effectively stabilize the polluted fractions isolated in the physical treatment.
Collapse
Affiliation(s)
- A M Díaz
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600, Mieres, Spain
| | - D Baragaño
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/ Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
| | - J M Menéndez-Aguado
- Environmental Biogeochemistry & Raw Materials Group. Campus of Mieres, University of Oviedo, 33600, Mieres, Spain
| | - A Norén
- Department of Architecture and Civil Engineering, Water Environment Technology. Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - K Karlfeldt Fedje
- Department of Architecture and Civil Engineering, Water Environment Technology. Chalmers University of Technology, 412 96 Gothenburg, Sweden; Recycling and Waste Management, Renova AB, Box 156, SE-401 22 Gothenburg, Sweden
| | - E Espín
- Instituto de Investigaciones Mineras (IIM), Universidad Nacional de San Juan, Av. del Libertador General San Martin, 1109, San Juan, Argentina
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600, Mieres, Spain
| |
Collapse
|
4
|
Namakka M, Rahman MR, Bin Mohamad Said KA, Muhammad A. Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Adv 2024; 14:30411-30439. [PMID: 39318464 PMCID: PMC11420651 DOI: 10.1039/d4ra03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The growing threat of environmental pollution to global environmental health necessitates a focus on the search for sustainable wastewater remediation materials coupled with innovative remediation strategies. Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron (ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as a powerful tool for environmental remediation. This analysis contributes to the ongoing search of effective solutions for environmental remediation. Synthesis techniques are analysed based on their efficacy, scalability, and environmental impact, providing insights into existing methodologies, current challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical properties and multifunctional engineering applications, including their role in wastewater and soil remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial applications of these materials are also discussed, accenting the importance of understanding the synthesis methods, materials' applications and their impacts on humans and the environment. The review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
Collapse
Affiliation(s)
- Murtala Namakka
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
- Ahmadu Bello University Zaria Kaduna state Nigeria
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Khairul Anwar Bin Mohamad Said
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Adamu Muhammad
- Nigerian National Petroleum Corporation Limited, NNPCl Nigeria
| |
Collapse
|
5
|
Gong Z, Wen J, Ji X. A META analysis on the efficacy of functional materials for soil chromium remediation. CHEMOSPHERE 2024; 362:142776. [PMID: 38969225 DOI: 10.1016/j.chemosphere.2024.142776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Metallic chromium pollution in soil is widespread, which aroused intensive research in recent decades. In mainstream research, most studies use materials with a reducing ability to adsorb and reduce hexavalent chromium. However, comprehensive analyses and systematic verifications of these different materials are scarce. Therefore, this study conducted a meta-analysis of relevant papers published from 2013 to October 2024 to compare and analyze the performance and usage conditions of some common materials, such as iron-based materials, mineral inorganic materials, organic materials, and layered double hydroxide materials. We synthesized 31 papers for 186 pairwise comparisons and selected the Standardized Mean Difference (SMD) as the appropriate effect size for mean-to-mean comparisons. Fe-based materials had the most stable performance based on its numerous data support, while organic materials had the worst performance. The difference in performance between inorganic mineral materials was the greatest, which was closely related to the selection of components. The difference in the effectiveness of inorganic materials was the greatest, which was closely related to the selection of components and there was room for further improvement. Through further analysis of the impact of environmental factors on material performance, it can be concluded that the effect of the material was better under alkaline, non-sandy, low organic matter, and high CEC soil conditions.
Collapse
Affiliation(s)
- Zhixuan Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing, PR China.
| | - Xiaodi Ji
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
6
|
Cáceres-Wenzel MI, Bernassani FN, Fuchs JS, Cortón E, Cochón AC. Mixture toxicity study of two metal oxide nanoparticles and chlorpyrifos on Eisenia andrei earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35470-35482. [PMID: 38730216 DOI: 10.1007/s11356-024-33604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Co-exposure soil studies of pollutants are necessary for an appropriate ecological risk assessment. Here, we examined the effects of two-component mixtures of metal oxide nanoparticles (ZnO NPs or goethite NPs) with the insecticide chlorpyrifos (CPF) under laboratory conditions in short-term artificial soil assays using Eisenia andrei earthworms. We characterized NPs and their mixtures by scanning electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential, and evaluated effects on metal accumulation, oxidative stress enzymes, and neurotoxicity related biomarkers in single and combined toxicity assays. Exposure to ZnO NPs increased Zn levels compared to control in single and combined exposure (ZnO NPs + CPF) at 72 h and 7 days, respectively. In contrast, there was no indication of Fe increase in organisms exposed to goethite NPs. One of the most notable effects on oxidative stress biomarkers was produced by single exposure to goethite NPs, showing that the worms were more sensitive to goethite NPs than to ZnO NPs. Acetylcholinesterase and carboxylesterase activities indicated that ZnO NPs alone were not neurotoxic to earthworms, but similar degrees of inhibition were observed after single CPF and ZnO NPs + CPF exposure. Differences between single and combined exposure were found for catalase and superoxide dismutase (goethite NPs) and for glutathione S-transferase (ZnO NPs) activities, mostly at 72 h. These findings suggest a necessity to evaluate mixtures of NPs with co-existing contaminants in soil, and that the nature of metal oxide NPs and exposure time are relevant factors to be considered when assessing combined toxicity, as it may have an impact on ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Marcela I Cáceres-Wenzel
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
| | - Florencia N Bernassani
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Julio S Fuchs
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Eduardo Cortón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Adriana C Cochón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| |
Collapse
|
7
|
Bao Q, Bao Y, Shi J, Sun Y. Nano zero-valent iron and melatonin synergistically alters uptake and translocation of Cd and As in soil-rice system and mechanism in soil chemistry and microbiology. ENVIRONMENT INTERNATIONAL 2024; 185:108550. [PMID: 38452466 DOI: 10.1016/j.envint.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Nanoscale zero-valent iron (Fe) is a promising nanomaterial for remediating heavy metal-contaminated soils. Melatonin (MT) is essential to alleviate environmental stress in plants. However, the conjunction effects of Fe and MT (FeMT) on rice Cd, As accumulation and the mechanism of soil chemical and microbial factors interaction are unclear. Here, a pot experiment was conducted to evaluated the effects of the FeMT for rice Cd, As accumulation and underlying mechanisms. The findings showed that FeMT significantly reduced grains Cd by 92%-87% and As by over 90%, whereas improving grains Fe by over 213%. Soil available-Cd and iron plaques-Cd (extracted by dithionite-citrate-bicarbonate solution, DCB-Cd) significantly regulated roots Cd, thus affected Cd transport to grains. Soil pH significantly affected soil As and DCB-As, which further influenced roots As uptake and the transport to shoots and grains. The interactions between the soil bacterial community and soil Fe, available Fe, and DCB-Fe together affected root Fe absorption and transportation in rice. FeMT significantly influenced rhizosphere soil bacterial α- and β-diversity. Firmicutes as the dominant phylum exhibited a significant positive response to FeMT measure, and acted a key role in reducing soil Cd and As availability mainly by improving iron-manganese plaques. The increase of soil pH caused by FeMT was beneficial only for Actinobacteriota growth, which reduced Cd, As availability probably through complexation and adsorption. FeMT also showed greater potential in reducing human health and ecological risks by rice consumption and straw returning. These results showed the important role of both soil chemical and microbial factors in FeMT-mediated rice Cd, As reduction efficiency. This study opens a novel strategy for safe rice production and improvement of rice iron nutrition level in heavy-metals polluted soil, but also provides new insights into the intricate regulatory relationships among soil biochemistry, toxic elements, microorganism, and plants.
Collapse
Affiliation(s)
- Qiongli Bao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China.
| | - Yinrong Bao
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiahao Shi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| |
Collapse
|
8
|
Gil-Díaz M, Álvarez-Aparicio J, Alonso J, Mancho C, Lobo MC, González J, García-Gonzalo P. Soil properties determine the impact of nZVI on Lactuca sativa L and its rhizosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122683. [PMID: 37827356 DOI: 10.1016/j.envpol.2023.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is a promising material tool for the remediation of metal(loid)-contaminated soils since it reduces metal(loid) availability and plant uptake, thereby enhancing the development of the plants. However, the effects of nZVI as nanoparticles on soil properties, plants, and the microbial rhizosphere in unpolluted soils are poorly understood. Here we tested the impact of nZVI at different doses (0.5 and 5% of commercial suspension) on soil properties, lettuce plants, and their microbial rhizosphere in two non-contaminated soils with distinct physico-chemical properties (alkaline versus acidic soil). To this end, a pot experiment was performed with lettuce plants in a growth chamber for a month. Both soils showed an increase in of pH and available Fe after nZVI application. However, these effects were more marked in the acidic soil. In this regard, the plants in this soil showed increased biomass and Fe content. TEM analysis revealed that although the roots and leaves of plants grown in the alkaline soil showed better cell integrity than those in acidic soil-an observation that was consistent with the visual appearance of the plants-the former were more affected by the nZVI treatment. Regarding the microbial rhizosphere, in general, nZVI enhanced enzyme activity regardless of the soil type. Microbial functional diversity showed a significant decline in response to nZVI in alkaline soil. In contrast, the 0.5% nZVI treatment had a positive effect on this parameter in acidic soil. Bacterial genetic diversity was less affected by the presence of nZVI than fungal diversity, which was higher in nZVI-treated acidic soils. In addition, alterations of bacterial and fungal communities were associated with available Fe in acidic soil. In conclusion, soil properties play a key role in determining the effects of nZVI on lettuce plants and their rhizosphere.
Collapse
Affiliation(s)
- M Gil-Díaz
- IMIDRA - Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain.
| | - J Álvarez-Aparicio
- IMIDRA - Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - J Alonso
- IMIDRA - Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - C Mancho
- IMIDRA - Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - M C Lobo
- IMIDRA - Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - J González
- IMIDRA - Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - P García-Gonzalo
- IMIDRA - Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
9
|
Zong W, Wang L, Wang X, Geng X, Lian Y, Wang H, Hou R, Guo J, Yang X, Hou D. Unraveling the aging dynamics in the simultaneous immobilization of soil metal(loid)s using oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167220. [PMID: 37734613 DOI: 10.1016/j.scitotenv.2023.167220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Immobilization represents the most extensively utilized technique for the remediation of soils contaminated by heavy metals and metalloids. However, it is crucial to acknowledge that contaminants are not removed during this process, thereby leaving room for potential mobilization over time. Currently, our comprehension of the temporal variations in immobilization efficacy, specifically in relation to amendments suitable for industrial sites, remains very limited. To address this knowledge gap, our research delved into the aging characteristics of diverse oxides, hydroxides, and hydroxy-oxides (collectively referred to as oxides) for the simultaneous immobilization of arsenic (As), cadmium (Cd), and antimony (Sb) in soils procured from 16 contaminated industrial sites. Our findings unveiled that Ca-oxides initially showed excellent immobilization performance for As and Sb within 7 days but experienced substantial mobilization by up to 71 and 13 times within 1 year, respectively. In contrast, the efficacy of Cd immobilization by Ca-oxides was enhanced with the passage of time. Fe- and Mg-oxides, which primarily operate through encapsulation or surface complexation, exhibited steady immobilization performances over time. This reliable and commendable immobilization effect was observed across distinct soils characterized by varying physicochemical properties, including pH, texture, CEC, TOC, and EC, underscoring the suitability of such amendments for immobilizing metal(loid)s in diverse soil types. MgO, in particular, displayed even superior immobilization performance over time, owing primarily to gradual hydration and physical entrapment effects. Remarkably, Mg-Al LDHs emerged as the most effective candidate for the simultaneous immobilization of As, Cd, and Sb. The results obtained from this study furnish valuable data for future investigations on the immobilization of metals and metalloids in industrial soils. They enable the projection of immobilization performance and offer practical guidance in selecting suitable amendments for the immobilization of metal(loid)s.
Collapse
Affiliation(s)
- Wenjing Zong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoxiang Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Xiaoguo Geng
- School of Environment, Tsinghua University, Beijing 100084, China; Wyoming Seminary, 201 N Sprague ave, Kingston, PA 18704, United States
| | - Yufei Lian
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Huixia Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Guo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaodong Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Tang Z, Tang X, Liu H, Xiao Z. Immobilizing arsenic-enriched wastewater from utilization of crude antimony oxides as scorodite using a novel multivalent iron source. CHEMOSPHERE 2023; 339:139751. [PMID: 37557998 DOI: 10.1016/j.chemosphere.2023.139751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Arsenic-enriched wastewater (A-EW) is a hypertoxic sewage from the utilization of crude antimony oxides in lead anode slime metallurgy. In traditional methods, the H+ accumulation inhibits the arsenic immobilization during scorodite synthesis. In this study, a novel multivalent iron source comprised of Fe(OH)3 and FeSO4·7H2O was proposed to resolve the adverse effects of pH fluctuation during immobilizing A-EW as scorodite. Various approaches, such as scanning electron microscopy and X-ray photoelectron spectroscopy, were applied to characterize the synthesized scorodite. This work was divided into two parts. In thermodynamics, HnAsO4(3-n)- (n = 1, 2, 3) and Fe(OH)n(3-n)+ (n = 0, 1, 2, 3) can feasibly coprecipitate as scorodite according to their △rGm,Tθ ranged from -111.10 kJ mol-1 to -33.53 kJ mol-1. In experimental research, A-EW was immobilized as scorodite by optimizing conditions as initial pH = 2.0, molar ratio of Fe to As = 1.2, molar ratio of Fe(II) to Fe(III) = 4:6, arsenic concentration = 40 g/L, and temperature = 95 °C. The arsenic precipitation ratio is 99.60%, and the micromorphology of synthesized scorodite presents a regular octahedron having size of 5-10 μm. The low leachability of As (0.41 mg/L) in toxicity characteristic leaching procedure (TCLP) confirmed that the prepared scorodite is nonhazardous. The solution pH is stable at 2.0 as the H+ depletion (0.5660 mol) by Fe(OH)3 dissolution and Fe2+ oxidization balanced with that (0.5657 mol) generated from As(V)-Fe(III) coprecipitation. In general, the A-EW was effectively immobilized by proposed multivalent iron source, and can be potentially applied to safely dispose other industrial effluents, such as high arsenic leachates and arsenic-bearing waste acid from nonferrous metallurgy.
Collapse
Affiliation(s)
- Zanlang Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xincun Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Haonan Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zeyu Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
11
|
Taghipour M, Jalali M. Leaching of Cr, Cu, Ni, and Zn from different solid wastes: Effects of adding adsorbents and using different leaching solutions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:319-331. [PMID: 37506589 DOI: 10.1016/j.wasman.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The leaching of potentially toxic elements from different industrial solid wastes (ISWs) must be understood to manage the environmental concerns they pose. The objective of this research was to investigate the effect of clay mineral (bentonite) and nanoparticle (MgO) on potentially toxic elements (Cr, Cu, Ni, Zn) leaching in some ISWs, when they leached with different leaching solutions. The highest amount of Zn and Ni was leached from ceramic factory waste (CFW) and stone cutting wastes (SCW), respectively, while the highest amount of Cr was leached from leather factory waste (LFW). In ISWs, the leaching percentage of Cu, Ni, and Zn were up to 11.2%, whereas the greatest leaching percentage of Cr was 26.7% of the total content. The addition of bentonite and MgO decreased potentially toxic element leaching. The results of effluents speciation of SFW indicated that at the beginning of leaching with CaCl2, nitric acid, and citric acid, 75.1%, 84.1%, and 39.6% of Cr were in different forms of Cr (III), respectively, while at the end of leaching the percentage of Cr (III) species were decreased and Cr (VI) species were increased to 83.6%, 88.4%, and 93.4%, respectively. The addition of bentonite and especially MgO to the ISWs reduced the leaching of potentially toxic elements as well as reduced the percentage of Cr (VI) in the effluents of SFW. The findings suggested that bentonite has the potential to be a low-cost and environmentally acceptable adsorbent for minimizing the leaching of Cr and other potentially toxic elements from ISWs.
Collapse
Affiliation(s)
- Marzieh Taghipour
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
12
|
Zhang X, Zou G, Chu H, Shen Z, Zhang Y, Abbas MHH, Albogami BZ, Zhou L, Abdelhafez AA. Biochar applications for treating potentially toxic elements (PTEs) contaminated soils and water: a review. Front Bioeng Biotechnol 2023; 11:1258483. [PMID: 37662433 PMCID: PMC10472142 DOI: 10.3389/fbioe.2023.1258483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental pollution with potentially toxic elements (PTEs) has become one of the critical and pressing issues worldwide. Although these pollutants occur naturally in the environment, their concentrations are continuously increasing, probably as a consequence of anthropic activities. They are very toxic even at very low concentrations and hence cause undesirable ecological impacts. Thus, the cleanup of polluted soils and water has become an obligation to ensure the safe handling of the available natural resources. Several remediation technologies can be followed to attain successful remediation, i.e., chemical, physical, and biological procedures; yet many of these techniques are expensive and/or may have negative impacts on the surroundings. Recycling agricultural wastes still represents the most promising economical, safe, and successful approach to achieving a healthy and sustainable environment. Briefly, biochar acts as an efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar can considerably reduce concentrations of herbicides in solutions. This review article explains the main reasons for the increasing levels of potentially toxic elements in the environment and their negative impacts on the ecosystem. Moreover, it briefly describes the advantages and disadvantages of using conventional methods for soil and water remediation then clarifies the reasons for using biochar in the clean-up practice of polluted soils and waters, either solely or in combination with other methods such as phytoremediation and soil washing technologies to attain more efficient remediation protocols for the removal of some PTEs, e.g., Cr and As from soils and water.
Collapse
Affiliation(s)
- Xu Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Guoyan Zou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zheng Shen
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mohamed H. H. Abbas
- Soils and Water Department, Faculty of Agriculture, Soils and Water Department, Benha University, Benha, Egypt
| | - Bader Z. Albogami
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Li Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Ahmed A. Abdelhafez
- Soils and Water Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
- National Committee of Soil Science, Academy of Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
13
|
Aborisade MA, Geng H, Oba BT, Kumar A, Ndudi EA, Battamo AY, Liu J, Chen D, Okimiji OP, Ojekunle OZ, Yang Y, Sun P, Zhao L. Remediation of soil polluted with Pb and Cd and alleviation of oxidative stress in Brassica rapa plant using nanoscale zerovalent iron supported with coconut-husk biochar. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154023. [PMID: 37343484 DOI: 10.1016/j.jplph.2023.154023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Accumulation of toxic elements by plants from polluted soil can induce the excessive formation of reactive oxygen species (ROS), thereby causing retarded plants' physiological attributes. Several researchers have remediated soil using various forms of zerovalent iron; however, their residual impacts on oxidative stress indicators and health risks in leafy vegetables have not yet been investigated. In this research, nanoscale zerovalent iron supported with coconut-husk biochar (nZVI-CHB) was synthesized through carbothermal reduction process using Fe2O3 and coconut-husk. The stabilization effects of varying concentrations of nZVI-CHB and CHB (250 and 500 mg/kg) on cadmium (Cd) and lead (Pb) in soil were analyzed, and their effects on toxic metals induced oxidative stress, physiological properties, and antioxidant defence systems of the Brassica rapa plant were also checked. The results revealed that the immobilization of Pb and Cd in soil treated with CHB was low, leading to a higher accumulation of metals in plants grown. However, nZVI-CHB could significantly immobilize Pb (57.5-62.12%) and Cd (64.1-75.9%) in the soil, leading to their lower accumulation in plants below recommended safe limits and eventually reduced carcinogenic risk (CR) and hazard quotient (HQ) for both Pb and Cd in children and adults below the recommended tolerable range of <1 for HQ and 10-6 - 10-4 for CR. Also, a low dose of nZVI-CHB significantly mitigated toxic metal-induced oxidative stress in the vegetable plant by inhibiting the toxic metals uptake and increasing antioxidant enzyme activities. Thus, this study provided another insightful way of converting environmental wastes to sustainable adsorbents for soil remediation and proved that a low-dose of nZVI-CHB can effectively improve soil quality, plant physiological attributes and reduce the toxic metals exposure health risk below the tolerable range.
Collapse
Affiliation(s)
- Moses Akintayo Aborisade
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300072, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Belay Tafa Oba
- College of Natural Science, Arba Minch University, 21, Arba Minch, Ethiopia
| | - Akash Kumar
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Efomah Andrew Ndudi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Oluwaseun Princess Okimiji
- Department of Environmental Management, Faculty of Environmental Sciences, Lagos State University, PMB. 102101, Lagos State, Nigeria
| | - Oluwasheyi Zacchaeus Ojekunle
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, P.M.B 2240, Ogun State, Nigeria
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300072, China.
| |
Collapse
|
14
|
Vishwakarma V, Ogunkunle CO, Rufai AB, Okunlola GO, Olatunji OA, Jimoh MA. Nanoengineered particles for sustainable crop production: potentials and challenges. 3 Biotech 2023; 13:163. [PMID: 37159590 PMCID: PMC10163185 DOI: 10.1007/s13205-023-03588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, 203201 India
| | - Clement Oluseye Ogunkunle
- Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, 240003 Nigeria
- Department of Plant Biology, Osun State University, Osogbo, Nigeria
| | | | | | | | | |
Collapse
|
15
|
Lv Q, Zhou T, Wang T, Wang S, Ge Y, Song Y, Ren X, Hu S. Immobilizing arsenic in soil via amine metal complex: a case study using iron-ethylenediamine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51942-51954. [PMID: 36820968 DOI: 10.1007/s11356-023-25986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Fe-based nanomaterials have been extensively investigated for their application in mitigating arsenic (As) pollution in groundwater, sediment, and soils. Here, an iron-ethylenediamine (Fe-EDA) complex was synthesized and characterized using Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy before its use as an amendment to ameliorate As-polluted soils. Column leaching tests at three Fe-EDA application rates (1%, 3%, and 5%) were conducted, and their results were compared with those acquired after using nano zerovalent iron (nZVI) and Fe3O4, to assess their efficiency to amend As-contaminated paddy soils. After leaching, stabilization efficiency and soil chemical characteristics were determined. Additionally, As fractions were measured using inductively coupled plasma-mass spectroscopy by employing a sequential extraction procedure to evaluate the performance of the treatments and understand the underlying their mechanisms. Compared with the control treatment, the Fe-EDA treatment reduced As release by more than 35.33% in the 2nd leaching cycle, whereas nZVI and Fe3O4 decreased the As release by 11.84% and 24.60%, respectively. Moreover, the optimal addition of the Fe-EDA chelate was 5%, which stabilized more than 50% As in the soil from the 7th to 11th leaching cycles. After sequential extraction, the Fe-Mn oxide binding fraction, which was originally 12.65%, increased to 21.5%, 18.23%, and 21.71% after the application of nZVI, Fe3O4, and Fe-EDA amendments, respectively. Furthermore, our treatments promoted the binding of the As fraction with crystalline Fe (III) (oxyhydr)oxide (F3); however, other fractions did not increase considerably, suggesting that the Fe-EDA complex could effectively stabilize As through electrostatic attraction between the arsenate anion and EDA, as well as As-O-Fe bond formation via a coordinating reaction. Overall, Fe-EDA was found to be a potent amendment for mitigating As-polluted soil.
Collapse
Affiliation(s)
- Qilin Lv
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Tairan Zhou
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Tianhao Wang
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shuhan Wang
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanning Ge
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuling Song
- Hekou District Agricultural and Rural Bureau, Dongying City, Shandong Province, 257200, China
| | - Xueqin Ren
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Shuwen Hu
- College of Resources and Environment Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
16
|
Santos FHD, Soares MB, Alleoni LRF. Pristine and biochar-supported nano zero-valent iron to immobilize As, Zn and Pb in soil contaminated by smelting activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116017. [PMID: 36027729 DOI: 10.1016/j.jenvman.2022.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Nano zero-valent iron (nZVI) is one of the most studied nanomaterials for environmental remediation during the past 20 years. However, few studies have focused on nZVI combination with other materials (e.g., biochar) for enhancement of soil remediation. In this study, pristine nZVI and a composite of wood sawdust biochar (BC) and nZVI (nZVI-BC) were added to a highly contaminated soil to compare their efficacy in immobilizing available arsenic (As = 28.6 mg kg-1), zinc (Zn = 1707 mg kg-1), and lead (Pb = 6759 mg kg-1). Sediment quality guidelines were used to evaluate the extent of soil contamination and ascertain its source. The mineralogy of soil and slags were assessed by X-ray Diffractometry Spectroscopy (XRD), and the geochemical fractions of Pb, Zn, and As were obtained by chemical sequential extractions. The average Pollution Load Index (PLI) was 10.66, indicating elevated multi-elemental contamination. Contamination Factor (CF) values for As, Zn, Pb, cadmium (Cd), and copper (Cu) were all higher than 6 which implies extreme contamination. Secondary minerals frequently found in Pb/Zn smelter sites, such as cerussite and anglesite, were detected in the slags through XRD. Pb and Zn were mainly bound to carbonates and residual fractions in soil and presented a high risk considering the sediment quality guidelines, sequential extraction results, and XRD analysis. The treatment with nZVI-BC was more effective than pristine nZVI on concurrently decreasing 97% of available As, 84% of Pb and 81% of Zn compared to control. The application of nZVI-BC is a promising green and sustainable remediation technique for soils contaminated with potentially toxic elements of distinct chemical behavior.
Collapse
Affiliation(s)
- Felipe Hipólito Dos Santos
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil.
| | - Matheus Bortolanza Soares
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Luís Reynaldo Ferracciú Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
17
|
Wang P, Shen F, Li R, Guo D, Liang W, Liu T, Zhang Z. Remediation of Cd and Zn contaminated soil by zero valent iron (Fe 0): A field trial. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102603. [DOI: 10.1016/j.eti.2022.102603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
18
|
Liu X, Zhang S, Zhang X, Guo H, Lou Z, Zhang W, Chen Z. Cr(VI) immobilization in soil using lignin hydrogel supported nZVI: Immobilization mechanisms and long-term simulation. CHEMOSPHERE 2022; 305:135393. [PMID: 35724719 DOI: 10.1016/j.chemosphere.2022.135393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
A novel nanocomposite, named as nZVI@LH, was prepared by nanoscale zero-valent iron (nZVI) supported on lignin hydrogel and was used in the remediation of Cr(VI)-contaminated soil collected from an industrial site. Meanwhile, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and X-ray diffractometry (XRD) results determined that nZVI nanoparticles disperse uniformly on hydrogel. After the 14 days remediation, the immobilization efficiency of Cr(VI) could reach over 87% in the treatment of 3% (w/w%) nZVI@LH and 26% in the treatment of bare-nZVI. Leaching experiment results showed that the treatment group with 3% (w/w%) nZVI@LH was up to the national leaching toxicity identification standard, and there was no threat in simulation of acid rain over the long term. The water-soluble (WS) fraction in 3# nZVI@LH treatment decreased 31.1%, while the Fe-Mn oxide bound (OX) fraction and organic matter-bound (OM) fraction increased 10.9% and 13.4%, respectively. Moreover, nZVI@LH had limited impact on soil properties and the capability to immobilize Cr over a long period exposure to acid rain. This work prove that nZVI@LH has the potential to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shenyu Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Hao Guo
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqun Chen
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
19
|
Panthri M, Gupta M. An insight into the act of iron to impede arsenic toxicity in paddy agro-system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115289. [PMID: 35598452 DOI: 10.1016/j.jenvman.2022.115289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Surplus research on the widespread arsenic (As) revealed its disturbing role in obstructing the metabolic function of plants. Also, the predilection of As towards rice has been an interesting topic. Contrary to As, iron (Fe) is an essential micronutrient for all life forms. Past findings propound about the enhanced As-resistance in rice plants during Fe supplementation. Thus, considering the severity of As contamination and resulting exposure through rice crops, as well as the studied cross-talks between As and Fe, we found this topic of relevance. Keeping these in view, we bring this review discussing the presence of As-Fe in the paddy environment, the criticality of Fe plaque in As sequestration, and the effectiveness of various Fe forms to overcome As toxicity in rice. This type of interactive analysis for As and Fe is also crucial in the context of the involvement of Fe in cellular redox activities such as oxidative stress. Also, this piece of work highlights Fe biofortification approaches for better rice varieties with optimum intrinsic Fe and limited As. Though elaborated by others, we lastly present the acquisition and transport mechanisms of both As and Fe in rice tissues. Altogether we suggest that Fe supply and Fe plaque might be a prospective agronomical tool against As poisoning and for phytostabilization, respectively.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
20
|
Janeiro-Tato I, Baragaño D, Lopez-Anton MA, Rodríguez E, Peláez AI, García R, Gallego JR. Goethite-based carbon foam nanocomposites for concurrently immobilizing arsenic and metals in polluted soils. CHEMOSPHERE 2022; 301:134645. [PMID: 35439496 DOI: 10.1016/j.chemosphere.2022.134645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Although different amendments have been used for the immobilization of metals and metalloids in contaminated soils, in most of them there are still important challenges that need to be faced in order to achieve an optimal result. In this work, a new material based on a carbon foam impregnated with goethite nanoneedles has been developed with the aim of evaluating its effect on the mobility and availability of As, Cd, Cu, Pb and Zn in an industrial soil. For this purpose, leaching, sequential extraction and phytotoxicity studies have been carried out. The results were compared with the same carbon foam without goethite impregnation. When the soil was treated with goethite-based carbon foam nanocomposite, the mobility of metal(loid)s was markedly reduced, with the exception of Zn, which showed moderate immobilization. The presence of acid groups on the surface of the carbon foam, together with a high surface area, led to a strong immobilization of pollutants. Moreover, the modification of the foams using goethite nanoneedles, imply that the novel nanocomposite obtained is effective to remediate simultaneously metal and metalloid-polluted soils, without any relevant effect on soil toxicity.
Collapse
Affiliation(s)
- I Janeiro-Tato
- Instituto de Ciencia y Tecnología Del Carbono, INCAR-CSIC, C/ Francisco Pintado Fe, 26, 33011, Oviedo, Spain; Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain
| | - D Baragaño
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain
| | - M A Lopez-Anton
- Instituto de Ciencia y Tecnología Del Carbono, INCAR-CSIC, C/ Francisco Pintado Fe, 26, 33011, Oviedo, Spain.
| | - E Rodríguez
- Instituto de Ciencia y Tecnología Del Carbono, INCAR-CSIC, C/ Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - A I Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - R García
- Instituto de Ciencia y Tecnología Del Carbono, INCAR-CSIC, C/ Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain
| |
Collapse
|
21
|
Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Ghafoor M, Ali N, Iqbal HMN. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113060. [PMID: 35283076 DOI: 10.1016/j.envres.2022.113060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.
Collapse
Affiliation(s)
- Liu Fei
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Ghafoor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Baragaño D, Forján R, Álvarez N, Gallego JR, González A. Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128748. [PMID: 35405586 DOI: 10.1016/j.jhazmat.2022.128748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Zero valent iron nanoparticles (nZVI) attract interest given their effectiveness in soil remediation. However, little attention has been given to their impacts on plants. Likewise, although fertilizers are commonly used to enhance phytoremediation, their effects on As mobilization, resulting in potential toxic effects, require further study. In this context, we examined the impact of As and Hg accumulation on the antioxidative system of Medicago sativa grown in a soil amended with organic fertilizer and/or nZVI. The experiment consisted of 60 pots. Plants were pre-grown and transferred to pots, which were withdrawn along time for monitoring purposes. As and Hg were monitored in the soil-plant system, and parameters related to oxidative stress, photosynthetic pigments, and non-protein thiol compounds (NPTs) were measured. In general, the application of nZVI immobilized As in soil and increased Hg accumulation in the plant, although it surprisingly decreased oxidative stress. Plants in nZVI-treated soil also showed an increase in NPT content in roots. In contrast, the application of the fertilizer mobilized As, thereby improving bioaccumulation factors. However, when combining fertilizer with nZVI, the As accumulation is mitigated. This observation reveals that simultaneous amendments are a promising approach for soil stabilization and the phytomanagement of As/Hg-polluted soils.
Collapse
Affiliation(s)
- D Baragaño
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain.
| | - R Forján
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - N Álvarez
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| |
Collapse
|
23
|
Abdelrhman F, Gao J, Ali U, Wan N, Hu H. Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40745-40754. [PMID: 35083675 DOI: 10.1007/s11356-021-17968-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The opposed transformation of arsenic (As) and cadmium (Cd) in paddy soil postures numerous challenges for their simultaneous remediation. An incubation study was conducted on the immobilization of Cd and As by biochar (BC), goethite (G), goethite-combined biochar (BC + G), and goethite-modified biochar (GBC). The results showed that biochar effectively immobilized Cd while significantly increasing As mobility, whereas goethite effectively immobilized As more than Cd. BC + G treatment significantly decreased toxicity characteristics leaching procedure (TCLP) and CaCl2-extractable Cd by 22.70% and 40.15%; meanwhile, TCLP and NaHCO3-As were significantly reduced by 38.25% and 31.87%, respectively, compared with the control. This study found that GBC was the optimum amendment within the immobilization efficiency for CaCl2-Cd (57.03%) and TCLP-As (61.11%). BC + G and GBC applications showed some interactions between biochar and goethite, which played an essential role in immobilizing Cd and As simultaneously. Therefore, GBC showed a great benefit in being a low-cost and efficient environmental amendment for Cd and As remediation in alkaline co-contaminated paddy soil.
Collapse
Affiliation(s)
- Fatma Abdelrhman
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jieyu Gao
- Hubei Geological Survey Institute, Wuhan, 430034, China
| | - Umeed Ali
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Neng Wan
- Hubei Geological Survey Institute, Wuhan, 430034, China
| | - Hongqing Hu
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Zhang P, Fan J, Xu X, Xu Z, Yu Y, Zhao L, Qiu H, Cao X. Contrasting effects of dry-wet and freeze-thaw aging on the immobilization of As in As-contaminated soils amended by zero-valent iron-embedded biochar. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128123. [PMID: 34968846 DOI: 10.1016/j.jhazmat.2021.128123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Zero-valent iron-embedded biochar (ZVI/BC) is considered as an effective material for arsenic (As) immobilization in soil, but the stability of As after remediation against aging remains unknown. Herein, the effects of dry-wet and freeze-thaw aging on the immobilization of As in two As-contaminated soils amended by ZVI/BC were evaluated. ZVI/BC showed high immobilization capacity for As-contaminated soils with an over 82% decrease of bioavailable As, mainly due to the As-Fe co-precipitation accompanied with ZVI oxidation. The aging of dry-wet and freeze-thaw had an opposite effect on the bioavailability of As. After 35 rounds of dry-wet aging, bioavailable As concentration increased from 1.25-9.50 to 1.83-21.75 mg/kg, because of the oxidation dissolution of ZVI and the formation of mobile reduced As(III). By contrast, the crystallization of amorphous iron with the structural incorporation of sorbed As and the oxidation of As(III) into stable As(V) occurred during the 35 rounds of freeze-thaw aging, leading to the decrease of bioavailable As concentration from 9.50-1.25 to 5.42-0.45 mg/kg. Our results revealed that the stability of soil As after remediation by ZVI/BC varied with the different aging process, which needs more consideration for the long-term soil As immobilization in the different whether areas.
Collapse
Affiliation(s)
- Pengyu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yulu Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| |
Collapse
|
25
|
Andrade-Zavaleta K, Chacon-Laiza Y, Asmat-Campos D, Raquel-Checca N. Green Synthesis of Superparamagnetic Iron Oxide Nanoparticles with Eucalyptus globulus Extract and Their Application in the Removal of Heavy Metals from Agricultural Soil. Molecules 2022; 27:1367. [PMID: 35209154 PMCID: PMC8880537 DOI: 10.3390/molecules27041367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022] Open
Abstract
The green synthesis of metal oxide nanoparticles is presented as an excellent sustainable alternative for achieving nanostructures, with potential applications. This research provides important information regarding the influence of the type of solvent used in extracting organic reducing agents from E. globulus on the FeO NPs green synthesis protocol. A broad approach to characterization is presented, where UV-vis spectrophotometry suggests the presence of this type of nanoparticulate material. Likewise, the reduction mechanism was evaluated by FT-IR and the magnetic properties were evaluated by PPSM. In addition, characterizations were linked via elemental analysis (EDX), crystallographic characterization (XRD), electron microscopy (SEM/STEM), and Z potential to evaluate colloidal stability. The results show the influence of the type of solvent used for the extraction of organic reducing agents from E. globulus, and the effect on the synthesis of FeO NPs. In addition, the nanostructure material obtained showed excellent efficiency in the remediation of agricultural soil, eliminating metals such as Cr-VI, Cd, and, to a lesser extent, Pb.
Collapse
Affiliation(s)
- Karin Andrade-Zavaleta
- Facultad de Ingeniería, Ingeniería Ambiental, Universidad Privada del Norte, Trujillo 13011, Peru; (K.A.-Z.); (Y.C.-L.)
| | - Yessica Chacon-Laiza
- Facultad de Ingeniería, Ingeniería Ambiental, Universidad Privada del Norte, Trujillo 13011, Peru; (K.A.-Z.); (Y.C.-L.)
| | - David Asmat-Campos
- Dirección de Investigación, Innovación & Responsabilidad Social, Universidad Privada del Norte, Trujillo 13011, Peru
| | | |
Collapse
|
26
|
Baragaño D, Ratié G, Sierra C, Chrastný V, Komárek M, Gallego JR. Multiple pollution sources unravelled by environmental forensics techniques and multivariate statistics. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127413. [PMID: 34879507 DOI: 10.1016/j.jhazmat.2021.127413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Industrial sites affected by anthropogenic contamination, both past and present-day, commonly have intricate pollutant patterns, and source discrimination can be thus highly challenging. To this goal, this paper presents a novel approach combining multivariate statistics and environmental forensic techniques. The efficiency of this methodology was exemplified in a severely polluted estuarine area (Avilés, Spain), where factor analysis and clustering were performed to identify sub-areas with distinct geochemical behaviour. Once six clusters were defined and a pollution index applied, forensic tools revealed that the As speciation, Pb isotopes, and PAHs molecular ratios were useful to categorise the cluster groups on the basis of distinct pollution sources: Zn-smelting, coaly particles and waste disposal. Overall, this methodology offers valuable insight into pollution sources identification, which can be extended to comparable scenarios of complexly polluted environmental compartments. The information gathered using this approach is also important for the planning of risk assessment procedures and potential remediation strategies.
Collapse
Affiliation(s)
- D Baragaño
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus de Mieres, University of Oviedo, 33600 Mieres, Spain.
| | - G Ratié
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic
| | - C Sierra
- Escuela Superior de Ingenieros de Minas y Energía, Campus de Vegazana, University of León, 24071 León, Spain
| | - V Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic
| | - M Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus de Mieres, University of Oviedo, 33600 Mieres, Spain
| |
Collapse
|
27
|
Wang G, Peng C, Tariq M, Lin S, Wan J, Liang W, Zhang W, Zhang L. Mechanistic insight and bifunctional study of a sulfide Fe 3O 4 coated biochar composite for efficient As(III) and Pb(II) immobilization in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118587. [PMID: 34843845 DOI: 10.1016/j.envpol.2021.118587] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Trace elements contamination in soil has aroused global concern nowadays, but the efficient, multifunctional, and economically viable method still remains a major challenge. In this research study, a sulfide Fe3O4 coated biochar composite (S/Fe-BC) has been synthesized successfully and applied to As(III)/Pb(II) co-contaminated soil. The immobilization efficiency of S/Fe-BC (2%) for the two elements exceeded 90%, and could ensure the synchronous and efficient immobilization in a wide range of pH (4.0-8.0). The TCLP-As and Pb amounts were sharply dropped after 28 days of stabilization; Meanwhile, a majority of exchangeable and carbonate-bound fractions of As and Pb were transferred into the less accessible residuals. Compared with Fe3O4 coated BC, the good immobilization performance of S/Fe-BC was mainly related to the enhancement of specific surface area, improvement of ionic exchange process, followed by the increase of Pb(II) precipitation and As(III) oxidation. Furthermore, competitive and synergistic effects were observed. In depth characterization analyses revealed the simultaneous immobilization mechanisms involving the adsorption, precipitation (Pb(OH)2, PbSO4, and PbS), co-precipitation (PbFeAsO4(OH)), and oxidation. Conclusively, outstanding performance of S/Fe-BC composite is considered as a good multifunctional potential candidate for the immobilization of trace elements from a soil system.
Collapse
Affiliation(s)
- Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Tariq
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano- Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Sen Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lehua Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
28
|
Hiller E, Jurkovič Ľ, Faragó T, Vítková M, Tóth R, Komárek M. Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117268. [PMID: 33964561 DOI: 10.1016/j.envpol.2021.117268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Soils containing a large proportion of industrial waste can pose a health risk due to high environmentally available concentrations of toxic metal(loid)s. Nano zero-valent iron (nZVI) and amorphous manganese oxide (AMO) were applied as immobilising amendments (1 wt%) to soils with different industrial origin of As and Sb, and leaching of As, Sb, Pb, and Zn was investigated using a single extraction with deionised water. The different industrial impact was reflected in the mineralogy, chemical composition and pH of these soils. Water-soluble As ratios positively correlated with pH in all experimental treatments. A significant decrease of water-soluble As ratios was observed in all nZVI-amended soils (~65-93% of the control) except for one sample with the lowest solution pH. Nano zero-valent iron was also successful in Sb immobilisation (~76-90% of the control). Highly variable results were obtained for AMO, which only led to a decrease of water-soluble As in soils with solution pH of ≥7 (~70-80% of the control), probably due to lower stability of AMO in acidic conditions. In each case, nZVI was more efficient at decreasing water-soluble As ratios than AMO. Dissolved Pb concentrations remained unchanged after the application of nZVI and AMO, and the decrease of Zn leaching using AMO was controlled mainly by soil pH increase induced by its application. According to the calculated saturation indices, tripuhyite (FeSbO4) was predicted to be the key mineral controlling Sb solubility in mine soils. Secondary Fe (hydr)oxides either originally present or newly formed due to nZVI oxidation were instrumentally identified at different stages of their transformation and metal(loid) retention. To conclude, nZVI is suitable for application to contaminated soils at a wide pH range, while the use of AMO for decreasing As leaching is limited to soils with pH ≥ 7.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic
| | - Roman Tóth
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
29
|
Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. WATER 2021. [DOI: 10.3390/w13162186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has been widely used in many fields including in soil and groundwater remediation. Nanoremediation has emerged as an effective, rapid, and efficient technology for soil and groundwater contaminated with petroleum pollutants and heavy metals. This review provides an overview of the application of nanomaterials for environmental cleanup, such as soil and groundwater remediation. Four types of nanomaterials, namely nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), and metallic and magnetic nanoparticles (MNPs), are presented and discussed. In addition, the potential environmental risks of the nanomaterial application in soil remediation are highlighted. Moreover, this review provides insight into the combination of nanoremediation with other remediation technologies. The study demonstrates that nZVI had been widely studied for high-efficiency environmental remediation due to its high reactivity and excellent contaminant immobilization capability. CNTs have received more attention for remediation of organic and inorganic contaminants because of their unique adsorption characteristics. Environmental remediations using metal and MNPs are also favorable due to their facile magnetic separation and unique metal-ion adsorption. The modified nZVI showed less toxicity towards soil bacteria than bare nZVI; thus, modifying or coating nZVI could reduce its ecotoxicity. The combination of nanoremediation with other remediation technology is shown to be a valuable soil remediation technique as the synergetic effects may increase the sustainability of the applied process towards green technology for soil remediation.
Collapse
|
30
|
Ganie AS, Bano S, Khan N, Sultana S, Rehman Z, Rahman MM, Sabir S, Coulon F, Khan MZ. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. CHEMOSPHERE 2021; 275:130065. [PMID: 33652279 DOI: 10.1016/j.chemosphere.2021.130065] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/04/2023]
Abstract
A major and growing concern within society is the lack of innovative and effective solutions to mitigate the challenge of environmental pollution. Uncontrolled release of pollutants into the environment as a result of urbanisation and industrialisation is a staggering problem of global concern. Although, the eco-toxicity of nanotechnology is still an issue of debate, however, nanoremediation is a promising emerging technology to tackle environmental contamination, especially dealing with recalcitrant contaminants. Nanoremediation represents an innovative approach for safe and sustainable remediation of persistent organic compounds such as pesticides, chlorinated solvents, brominated or halogenated chemicals, perfluoroalkyl and polyfluoroalkyl substances (PFAS), and heavy metals. This comprehensive review article provides a critical outlook on the recent advances and future perspectives of nanoremediation technologies such as photocatalysis, nano-sensing etc., applied for environmental decontamination. Moreover, sustainability assessment of nanoremediation technologies was taken into consideration for tackling legacy contamination with special focus on health and environmental impacts. The review further outlines the ecological implications of nanotechnology and provides consensus recommendations on the use of nanotechnology for a better present and sustainable future.
Collapse
Affiliation(s)
- Adil Shafi Ganie
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Sayfa Bano
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Nishat Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Saima Sultana
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Zubair Rehman
- Section of Organic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohammed M Rahman
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
31
|
Radziemska M, Gusiatin ZM, Holatko J, Hammerschmiedt T, Głuchowski A, Mizerski A, Jaskulska I, Baltazar T, Kintl A, Jaskulski D, Brtnicky M. Nano Zero Valent Iron (nZVI) as an Amendment for Phytostabilization of Highly Multi-PTE Contaminated Soil. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2559. [PMID: 34069264 PMCID: PMC8156641 DOI: 10.3390/ma14102559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
In recent years, a lot of attention has been given to searching for new additives which will effectively facilitate the process of immobilizing contaminants in the soil. This work considers the role of the enhanced nano zero valent iron (nZVI) strategy in the phytostabilization of soil contaminated with potentially toxic elements (PTEs). The experiment was carried out on soil that was highly contaminated with PTEs derived from areas in which metal waste had been stored for many years. The plants used comprised a mixture of grasses-Lolium perenne L. and Festuca rubra L. To determine the effect of the nZVI on the content of PTEs in soil and plants, the samples were analyzed using flame atomic absorption spectrometry (FAAS). The addition of nZVI significantly increased average plant biomass (38%), the contents of Cu (above 2-fold), Ni (44%), Cd (29%), Pb (68%), Zn (44%), and Cr (above 2-fold) in the roots as well as the soil pH. The addition of nZVI, on the other hand, was most effective in reducing the Zn content of soil when compared to the control series. Based on the investigations conducted, the application of nZVI to soil highly contaminated with PTEs is potentially beneficial for the restoration of polluted lands.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02 776 Warsaw, Poland
| | - Zygmunt M. Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10 719 Olsztyn, Poland;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
| | - Andrzej Głuchowski
- SGGW Water Centre, Warsaw University of Life Sciences—SGGW, 02 787 Warsaw, Poland;
| | - Andrzej Mizerski
- The Main School of Fire Service, Slowackiego 52/54, 01 629 Warsaw, Poland;
| | - Iwona Jaskulska
- Department of Agronomy, Faculty of Agriculture and Biotechnology, University of Science and Technology, 7 Prof. S. Kaliskiego St., 85 796 Bydgoszcz, Poland; (I.J.); (D.J.)
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Dariusz Jaskulski
- Department of Agronomy, Faculty of Agriculture and Biotechnology, University of Science and Technology, 7 Prof. S. Kaliskiego St., 85 796 Bydgoszcz, Poland; (I.J.); (D.J.)
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61 300 Brno, Czech Republic; (J.H.); (T.H.); (T.B.); (A.K.); (M.B.)
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| |
Collapse
|
32
|
Li J, Zhang Y, Wang F, Wang L, Liu J, Hashimoto Y, Hosomi M. Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144521. [PMID: 33450681 DOI: 10.1016/j.scitotenv.2020.144521] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The potential of using zero-valent iron (ZVI) or a Fe3O4-loaded magnetic biochar to stabilize arsenic (As) in contaminated soil was investigated in the processes of incubation trial, chemical extraction, pot experiments with ryegrass growth. Additionally, a dry magnetic separation technique was applied to verify the possible permanent removal of As from the bulk soil. Results showed the ZVI amendment greatly reduced the As leaching, and the leached concentration became much lower than the Japanese environment standard (10 μg/L) after 180 days of incubation. Contrarily, the magnetic biochar amendment readily increased the As leachability due to the changes in pH, dissolved organic carbon, and soluble P and Si. The ZVI had a greater effect over the magnetic biochar, supported by the significantly reduced As leachability in the combined amendments. Furthermore, results from sequential extraction analysis indicate that both amendments significantly decreased the available As in (NH4)2SO4 and NH4H2PO4 extraction and increased the As bound to amorphous Fe oxides. But ZVI amendment alone performed better than magnetic biochar amendment alone. Plant growth experiment showed that the ZVI amendment enhanced ryegrass growth and significantly increased the ryegrass biomass. However, the magnetic biochar amendment resulted in an adverse effect on the ryegrass root growth, probably due to a marked enhancement of salinity. Meanwhile, the As uptake by ryegrass was significantly reduced in both ZVI and magnetic biochar-amended soils. Results of dry magnetic separation showed that averaged 20% and 25% of total As could be retrieved from ZVI and magnetic biochar amended soil, respectively; and the As bound to amorphous Fe oxides was the main retrieved fraction. This study indicated that ZVI or magnetic biochar could be applied as a promising amendment for reducing (phyto)availability of As in soil, and dry magnetic separation could be served as an alternative option for permanently removing As.
Collapse
Affiliation(s)
- Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Ying Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jing Liu
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
33
|
Xu Z, Lu Z, Zhang L, Fan H, Wang Y, Li J, Lin Y, Liu H, Guo S, Xu M, Wang J. Red mud based passivator reduced Cd accumulation in edible amaranth by influencing root organic matter metabolism and soil aggregate distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116543. [PMID: 33556735 DOI: 10.1016/j.envpol.2021.116543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Red mud was a highly alkaline hazardous waste, and their resource utilization was a research hotspot. In this study, influencing mechanisms of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted soil, photosynthetic property, and Cd accumulation in edible amaranth were investigated based on the evaluation of Cd adsorption capacity, root metabolic response, and soil aggregate distribution. Results showed that red mud exhibited good Cd adsorption capacities at about 35 °C and pH 9 in an aqueous solution, and the adsorption behavior of red mud on Cd in rhizosphere soil solution was considered to have some similarity. In the soil-pot trial, red mud application significantly facilitated edible amaranth growth by enhancing the maximum photochemical efficiency and light energy absorption by per unit leaf area by activating more reaction centers. The main mechanisms of rhizosphere soil Cd immobilisation by red mud application included: i) the reduction of mobilized Cd caused by the increasing negative surface charge of soil and precipitation of Cd hydroxides and carbonates at high pH; ii) the increase of organics-Cd complexes caused by the increasing -OH and -COOH amounts adsorbed on the surface of rhizosphere soil after red mud application; and iii) the decrease of available Cd content in soil aggregates caused by the increasing organic matters after red mud application. This study would provide the basis for the safe utilization of red mud remediating acidic Cd-polluted soil.
Collapse
Affiliation(s)
- Zhimin Xu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Ziyan Lu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Liangshi Zhang
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hanyun Fan
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yifan Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Junwei Li
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yanlin Lin
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shihong Guo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350013, China
| | - Mingyu Xu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Junfeng Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Jiang H, Li Y, Su Z, Zhang T, Meng L, Hu Y, Wan J, Xiong G, Wu Q. Preparation of carbon nanofibrous mats encapsulating zero-valent Fe nanoparticles as Fe reservoir for removal of organic pollutants. RSC Adv 2021; 11:4883-4889. [PMID: 35424435 PMCID: PMC8694559 DOI: 10.1039/d0ra10235k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
Zero-valent iron nanoparticles (ZVI NPs) display promising potential in the removal of organic pollutants and heavy metal ions for environmental remediation. However, it is crucial to prevent the oxidation of ZVI NP and control the release of Fe ions under storage and working conditions. In this study, ZVI NPs are encapsulated in single-axial and co-axial carbon nanofibers by electrospinning polyacrylonitrile (PAN)/Fe3+ nanofibrous mats with different structures and then annealing the PAN nanofibrous mats in reduction atmosphere. SEM images show that the diameter of the carbon nanofibers is affected by the structure of the nanofibers and the ZVI NPs content after the annealing treatment. The formation of ZVI NPs is confirmed through XPS spectra and HRTEM characterization. The catalytic degradation of organic pollutants by ZVI NPs encapsulated in the carbon nanofibrous mats is evaluated using methylene blue (MB). The results show that the degradation rate of MB is significantly improved when the ZVI NP content encapsulated in the nanofibers increased. MB is completely degraded by the nanofibrous mats with either the single-axial structure or the co-axial structure, but at a higher degradation rate by the single-axial structure than that by the co-axial structure. These results provide alternatives to utilize the carbon nanofibrous mats encapsulating ZVI NPs as Fe reservoir for the removal of organic pollutants in an emergent or long-term situation for environmental remediation.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yaomin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Zhengnan Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Tiantian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Guoxi Xiong
- Technology Center of China Tobacco Hubei Industrial Co. Ltd. Wuhan 430040 P. R. China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center, Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
35
|
Pizarro C, Escudey M, Caroca E, Pavez C, Zúñiga GE. Evaluation of zeolite, nanomagnetite, and nanomagnetite-zeolite composite materials as arsenic (V) adsorbents in hydroponic tomato cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141623. [PMID: 32877793 DOI: 10.1016/j.scitotenv.2020.141623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
There is a growing interest in the use of adsorbent nanoparticles to mitigate the toxic effects of pollutants in natural matrices. However, due to their small size, nanoparticles have the potential to transport and disseminate contaminants adsorbed on their surfaces into environmental compartments with greater risk to human, animal, or plant health. This potential consequence of nanoparticle application remains largely unstudied. Here, we studied the application of three adsorbents, including zeolite (Z, micrometric size), nanomagnetite (Mt), and a nanomagnetite-zeolite composite (MtZ) intended to mediate arsenic toxicity in hydroponic tomato cultures. Adsorption studies showed an arsenate adsorption sequence of MtZ (6.2 mg g-1) ≥ Mt (4.7 mg g-1) ≫ Z (0.3 mg g-1). Tomatoes grown under the Mt condition demonstrated the lowest growth rate (4.2 cm), corresponding to a 45% decrease compared to the control (7.6 cm), as well as the highest oxidative stress level (0.024 μmol g-1) as indicated by malondialdehyde (MDA) concentration, almost twice the control (0.014 μg g-1). Tomatoes grown under MtZ conditions showed a 22% decreased growth (5.9 cm) but MDA levels (0.012 μmol g-1) were comparable to the control. Together, these results suggest that Mt at the nanometric size could obstruct channels in the plant and prevent absorption of water and nutrients. Anchoring nanomaterials in larger composites of micrometer size presents a promising alternative that would retain their super-adsorbent properties while avoiding toxicity due to nanometric size.
Collapse
Affiliation(s)
- Carmen Pizarro
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile.
| | - Mauricio Escudey
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Eliana Caroca
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Carolina Pavez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile
| | - Gustavo E Zúñiga
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| |
Collapse
|
36
|
Gil-Díaz M, Álvarez MA, Alonso J, Lobo MC. Effectiveness of nanoscale zero-valent iron for the immobilization of Cu and/or Ni in water and soil samples. Sci Rep 2020; 10:15927. [PMID: 32985614 PMCID: PMC7522239 DOI: 10.1038/s41598-020-73144-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
In the last few years, the effectiveness of nanoscale zero-valent iron (nZVI) as a treatment for polluted waters and soils has been widely studied. However, little data are available on its efficacy for metal immobilization at low and moderate doses. In this study, the effectiveness of two doses of commercial nZVI (1 and 5%) to immobilize Cu and/or Ni in water and acidic soil samples was evaluated. The influence of the nanoremediation technology on iron availability, physico-chemical soil properties and soil phytotoxicity was also assessed. The results show that the effectiveness of nZVI to immobilize Cu and Ni in water and soil samples was determined by the dose of the nanomaterial and the presence of both metals. Nickel immobilization was significantly decreased by the presence of Cu but the opposite effect was not observed. nZVI showed better immobilization capacity in water than in soil samples. In water, the dose of 5% completely removed both metals, whereas at a lower dose (1%) the percentage of immobilized metal decreased, especially for Ni in Cu + Ni samples. In soil samples, 5% nZVI was more effective in immobilizing Ni than Cu, with a 54% and 21% reduction of leachability, respectively, in single contaminated samples. In Cu + Ni soil samples, nZVI treatment led to a significant decrease in Ni immobilization, similar to that observed in water samples. The application of nZVI induced a dose-dependent increase in available Fe—a relevant effect in the context of soil rehabilitation. Germination assays of Medicago sativa and Vicia sativa seeds revealed that treatment with nZVI did not induce phytotoxicity under the experimental conditions tested, and that the phytotoxicity induced by Ni decreased significantly after the treatment. Thus, the use of nZVI emerges as an interesting option for Cu and/or Ni immobilization in water samples. The effectiveness of nZVI to remove Cu from acidic soil samples was moderate, while for Ni it was strongly dependent on the presence of Cu. These observations therefore indicate that the results in water samples cannot be extrapolated to soil samples.
Collapse
Affiliation(s)
- M Gil-Díaz
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain.
| | - M A Álvarez
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - J Alonso
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - M C Lobo
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
37
|
Baragaño D, Forján R, Fernández B, Ayala J, Afif E, Gallego JLR. Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33681-33691. [PMID: 32533482 DOI: 10.1007/s11356-020-09586-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Here we tested the capacity of zero valent iron nanoparticles (nZVI) combined with two organic amendments, namely, compost and biochar, to immobilize metal(oid)s such as As, Cu, Pb, and Zn. In addition, the effects of the amendments on the development of Brassica juncea L., a plant widely used for phytoremediation purposes, were also examined. To perform the experiments, pots containing polluted soil were treated with nZVI, compost-biochar, or a blend of compost-biochar-nZVI. Metal(oid)s availability and soil properties were evaluated after 15 and 75 days, and the height and weight of the plants were measured to determine development. The compost-biochar amendment showed excellent capacity to immobilize metals, but As availability was considerably increased. However, the addition of nZVI to the mixture corrected this effect considerably. In addition, soil treatment with nZVI alone led to a slight increase in Cu availability, which was not observed for the mixture with organic amendments. With respect to soil properties, the CEC and pH were enhanced by the compost-biochar amendment, thereby favoring plant growth. Nevertheless, the nanoparticles reduced the concentration of available P, which impaired plant growth to a certain extent. In conclusion, Fe-based nanoparticles combined with organic amendments emerge as powerful approaches to remediate soils contaminated by metals and metalloids.
Collapse
Affiliation(s)
- Diego Baragaño
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain.
| | - Rubén Forján
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| | - Begoña Fernández
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica and Environmental Technology, Biotechnology and Geochemistry Group, Universidad de Oviedo, Oviedo, Spain
| | - Julia Ayala
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica and Environmental Technology, Biotechnology and Geochemistry Group, Universidad de Oviedo, Oviedo, Spain
| | - Elias Afif
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Gonzalo Gutiérrez Quirós s/n. 33600, Mieres, España
| | - José Luis R Gallego
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| |
Collapse
|
38
|
Robinson MR, Coustel R, Abdelmoula M, Mallet M. As(V) and As(III) sequestration by starch functionalized magnetite nanoparticles: influence of the synthesis route onto the trapping efficiency. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:524-539. [PMID: 32939177 PMCID: PMC7476536 DOI: 10.1080/14686996.2020.1782714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 05/29/2023]
Abstract
We report the effect of the synthesis route of starch-functionalized magnetite nanoparticles (NPs) on their adsorption properties of As(V) and As(III) from aqueous solutions. NP synthesis was achieved by two different routes implying the alkaline precipitation of either a mixed Fe2+/Fe3+ salt solution (MC samples) or a Fe2+ salt solution in oxidative conditions (MOP samples). Syntheses were carried out with starch to Fe mass ratio (R) ranging from 0 to 10. The crystallites of starch-free MC NPs (14 nm) are smaller than the corresponding MOP (67 nm), which leads to higher As(V) sorption capacity of 0.3 mmol gFe -1 to compare with respect to 0.1 mmol gFe -1 for MOP at pH = 6. MC and MOP starch-functionalized NPs exhibit higher sorption capacities than a pristine one and the difference in sorption capacities between MOP and MC samples decreases with increasing R values. Functionalization tends to reduce the size of the magnetite crystallites and to prevent their agglomeration. Size reduction is more pronounced for MOP samples (67 nm (R0) to 12 nm (R10)) than for MC samples (14 nm (R0) to 9 nm (R10)). Therefore, due to close crystallite size, both MC and MOP samples, when prepared at R = 10, display similar As(V) (respectively, As(III)) sorption capacities close to 1.3 mmol gFe -1 (respectively, 1.0 mmol gFe -1). Additionally, according to the effect of pH on arsenic trapping, the electrostatic interactions appear as a major factor controlling As(V) adsorption while surface complexation may control As(III) adsorption.
Collapse
Affiliation(s)
| | - Romain Coustel
- CNRS, LCPME, Université de Lorraine, F-54000 Nancy, France
| | | | - Martine Mallet
- CNRS, LCPME, Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
39
|
Baldermann A, Fleischhacker Y, Schmidthaler S, Wester K, Nachtnebel M, Eichinger S. Removal of Barium from Solution by Natural and Iron(III) Oxide-Modified Allophane, Beidellite and Zeolite Adsorbents. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2582. [PMID: 32516994 PMCID: PMC7321624 DOI: 10.3390/ma13112582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/18/2023]
Abstract
Efficient capture of barium (Ba) from solution is a serious task in environmental protection and remediation. Herein, the capacity and the mechanism of Ba adsorption by natural and iron(III) oxide (FeO) modified allophane (ALO), beidellite (BEI) and zeolite (ZEO) were investigated by considering the effects of contact time, temperature, pH, Ba2+ concentration, adsorbent dosage, the presence of competitive ions and adsorption-desorption cycles (regenerability). Physicochemical and mineralogical properties of the adsorbents were characterized by XRD, FTIR, SEM with EDX and N2 physisorption techniques. The Ba2+ adsorption fitted to a pseudo-first-order reaction kinetics, where equilibrium conditions were reached within <30 min. BEI, ALO and ZEO with(out) FeO-modification yielded removal efficiencies for Ba2+ of up to 99.9%, 97% and 22% at optimum pH (pH 7.5-8.0). Adsorption isotherms fitted to the Langmuir model, which revealed the highest adsorption capacities for BEI and FeO-BEI (44.8 mg/g and 38.6 mg/g at 313 K). Preferential ion uptake followed in the order: Ba2+ > K+ > Ca2+ >> Mg2+ for all adsorbents; however, BEI and FeO-BEI showed the highest selectivity for Ba2+ among all materials tested. Barium removal from solution was governed by physical adsorption besides ion exchange, intercalation, surface complexation and precipitation, depending mainly on the absorbent type and operational conditions. BEI and FeO-BEI showed a high regenerability (>70-80% desorption efficiency after 5 cycles) and could be considered as efficient sorbent materials for wastewater clean-up.
Collapse
Affiliation(s)
- Andre Baldermann
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Yvonne Fleischhacker
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Silke Schmidthaler
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Katharina Wester
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Manfred Nachtnebel
- Institute of Electron Microscopy and Nanoanalysis, Graz Centre for Electron Microscopy (FELMI-ZFE), Steyrergasse 17, 8010 Graz, Austria;
| | - Stefanie Eichinger
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| |
Collapse
|
40
|
Wan X, Li C, Parikh SJ. Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114157. [PMID: 32086161 DOI: 10.1016/j.envpol.2020.114157] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/30/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Effective and economically viable method to remove elevated metal(loid)s from farm and industrial lands remains a major challenge. In this study, magnetic biochar-based adsorbents with Fe3O4 particles embedded in a porous biochar matrix was synthesized via iron (Fe) treated biochar or thermal pyrolysis of Fe treated cedar sawdust. Application and separation of the adsorbent to a multi-contaminated soil slurry simultaneously removed 20-30% of arsenic, cadmium and lead within 24 h. Fast removal of multi-metal(loid)s result from the decrease in all operationally defined fractions of metal(loid)s, not limited to the exchangeable fraction. The direct removal of arsenic-enriched soil particles was observed via micro X-ray fluorescence maps. Furthermore, through comparison of biochars with different production methods, it has been found that magnetization after pyrolysis treatment leads to stronger metals/metalloids adsorption with a higher qe (bound sorbate) than other treatments but pyrolysis after magnetization stabilized Fe oxides on the biochar surface, indicating a higher biochar recovery rate (∼65%), and thus a higher metal(loid)s removal efficiency. The stability of Fe oxides on the surface of biochar is the determining factor for the removal efficiency of metal(loid)s from soil.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA.
| | - Chongyang Li
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| |
Collapse
|
41
|
Effects of Different In Situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The demand for soils for recreational uses, gardening, or others in urban and periurban areas is increasing, and thus the presence of polluted technosols in these areas requires nature-based in situ remediation technologies. In this context, the capacity of three amendments, namely zero valent iron nanoparticles (nZVI), compost and a mixture of compost and biochar, to immobilise As in a polluted technosol simultaneously cultivated with Lolium perenne L. were tested and compared. The characteristics of the soil were comprehensively characterised by chemical and X-ray analysis to determine As contents, distribution, and mineralogy. As mobility was evaluated by the RBA methodology and then potential human health risks, both carcinogenic and non-carcinogenic, were assessed in all treatments. The nZVI treatment reduced risks due to the As immobilisation obtained (41% As decrease, RBA test), whereas the organic amendments did not imply any significant reduction of the RBA values. As to soil properties, the organic treatments applied lowered the pH values, increasing cation exchange capacity, and carbon and nutrient contents. To determine impacts over plant production, fresh biomass, As, Ca, Fe, K, Mg, Na and P were measured in Lolium under the different treatments. Notably, organic amendments improved As extraction by plants (57% increase), as well as fresh biomass (56% increase). On the contrary, nZVI diminished As extraction (65% decrease) and promoted a fresh biomass decrease of 57% due to nutrients immobilisation (61% decrease of P in plants tissues).
Collapse
|
42
|
Pasinszki T, Krebsz M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E917. [PMID: 32397461 PMCID: PMC7279245 DOI: 10.3390/nano10050917] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Present and past anthropogenic pollution of the hydrosphere and lithosphere is a growing concern around the world for sustainable development and human health. Current industrial activity, abandoned contaminated plants and mining sites, and even everyday life is a pollution source for our environment. There is therefore a crucial need to clean industrial and municipal effluents and remediate contaminated soil and groundwater. Nanosized zero-valent iron (nZVI) is an emerging material in these fields due to its high reactivity and expected low impact on the environment due to iron's high abundance in the earth crust. Currently, there is an intensive research to test the effectiveness of nZVI in contaminant removal processes from water and soil and to modify properties of this material in order to fulfill specific application requirements. The number of laboratory tests, field applications, and investigations for the environmental impact are strongly increasing. The aim of the present review is to provide an overview of the current knowledge about the catalytic activity, reactivity and efficiency of nZVI in removing toxic organic and inorganic materials from water, wastewater, and soil and groundwater, as well as its toxic effect for microorganisms and plants.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Department of Chemistry, School of Pure Sciences, College of Engineering, Science and Technology, Fiji National University, Suva P.O. Box 7222, Fiji;
| | | |
Collapse
|
43
|
Izydorczyk G, Sienkiewicz-Cholewa U, Baśladyńska S, Kocek D, Mironiuk M, Chojnacka K. New environmentally friendly bio-based micronutrient fertilizer by biosorption: From laboratory studies to the field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136061. [PMID: 31927280 DOI: 10.1016/j.scitotenv.2019.136061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
This paper reports the studies on the elaboration of new environmentally friendly fertilizer obtained by valorization of post-extraction biomass residues of alfalfa (Medicago) and goldenrod (Solidago), after extraction with supercritical carbon dioxide, via biosorption process. The performance and controlled release properties of fertilizer were assessed in laboratory under in vitro and in vivo conditions, as well as on the field. In vitro tests show high bioavailability of micronutrients (Cu, Mn, Zn) administered on the biological carrier - between 60 and 80%, in relation to 100% availability of sulphate microelements. This phenomenon is desirable and indicates slowed release pattern of micronutrients. Germination tests demonstrated the phytotoxicity effect of sulphates, while yield increase and biofortification effect by the use of new fertilizers was achieved. Field trials showed, that with respect to conventional micronutrient fertilizers (mineral salts), fertilizers obtained via biosorption resulted in increase of the content of Cu, Mn and Zn by 2.6, 88.6 and 50.6% in plant biomass, respectively. This is important from the point of view of plant and animal nutrition. In addition, the uptake of fertilizer components was calculated, indicating their degree of use. Calculations of micronutrient uptake in field trials shows a higher uptake of fertilizing microelements of products obtained via biosorption by 4.04% (Zn), 1.47% (Cu) and 20.63% (Mn) in relation to sulphates.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.
| | - Urszula Sienkiewicz-Cholewa
- Department of Herbology and Tillage Systems, Institute of Soil Science and Plant Cultivation National Research Institute, Orzechowa 61, 50-540 Wrocław, Poland
| | - Sylwia Baśladyńska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Daria Kocek
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| |
Collapse
|
44
|
Su B, Lin J, Owens G, Chen Z. Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113668. [PMID: 31796319 DOI: 10.1016/j.envpol.2019.113668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/05/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Iron nanoparticles (Fe NPs) have often been used for in situ remediation of both groundwater and soil. However, the impact of Fe NPs on the distribution and transformation of As species in contaminated soil is still largely unknown. In this study, green iron oxide nanoparticles synthesized using a euphorbia cochinchinensis leaf extract (GION) were used to stabilize As in a contaminated soil. GION exhibited excellent As stabilization effects, where As in non-specifically-bound and specifically-bound fractions decreased by 27.1% and 67.3% after 120 days incubation. While both arsenate (As (V)) and arsenite (As (III)) decreased after GION application, As (V) remained the dominant species in soil. X-ray photoelectron spectroscopy (XPS) confirmed that As (V) was the dominant species in specifically-bound fractions, while As (III) was the dominant species in amorphous and poorly-crystalline hydrous oxides of Fe and Al. Correlation analysis showed that while highly available As fractions were negatively correlated to oxalate and DCB extractable Fe, they were positively correlated to Fe2+ content, which indicated that Fe cycling was the main process influencing changes in As availability. X-ray fluorescence (XRF) spectroscopy also showed that the Fe2O3 content increased by 47.9% following GION soil treatments. Overall, this work indicated that As would be transformed to more stable fractions during the cycling of Fe following GION application and that the application of GION, even in small doses, provides a low-cost and ecofriendly method for the stabilization of As in soil.
Collapse
Affiliation(s)
- Binglin Su
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Jiajiang Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
45
|
Baragaño D, Forján R, Welte L, Gallego JLR. Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Sci Rep 2020; 10:1896. [PMID: 32024880 PMCID: PMC7002751 DOI: 10.1038/s41598-020-58852-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
The capacity of graphene oxide nanoparticles (nGOx) to reduce or increase As and metals availability in polluted soils was compared with that of zero valent iron nanoparticles (nZVI). The nanomaterials used in this study were characterized by X-ray techniques, CHNS-O analysis, dynamic light scattering, and microscopy procedures such as atomic force microscopy. To assess the capacity of these materials to immobilize pollutants, field samples of two soils were treated with nZVI and nGOx at a range of doses (0.2%, 1% and 5%). Availability tests were then performed. nGOx effectively immobilized Cu, Pb and Cd, but mobilized As and P (even at low doses), in the latter case irrespective of the simultaneous presence of high concentrations of metals. In turn, nZVI promoted notable immobilization results for As and Pb, a poorer result for Cd, and an increased availability for Cu. Soil pH and EC have been slightly affected by nGOx. On the whole, nGOx emerges as a promising option for mobilization/immobilization strategies for soil nanoremediation when combined with other techniques such as phytoremediation.
Collapse
Affiliation(s)
- Diego Baragaño
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain.
| | - Rubén Forján
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| | - Lorena Welte
- Kleinscale S.L., Calle Montoro 4 9D, 28922, Alcorcón, Madrid, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| |
Collapse
|
46
|
Bionanomining: biotechnological synthesis of metal nanoparticles from mining waste—opportunity for sustainable management of mining environmental liabilities. Appl Microbiol Biotechnol 2020; 104:1859-1869. [DOI: 10.1007/s00253-020-10353-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 12/19/2022]
|