1
|
Liu P, Pan X, Wu L, Afedo SY, Feng X, Yang J. Expression and localization of Cyclin D1/Nanog and NF-κB/Bax protein in dysplastic testicles of mice. Reprod Toxicol 2024; 130:108704. [PMID: 39214480 DOI: 10.1016/j.reprotox.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Testicular dysplasia significantly impairs male reproductive capacity. This study investigated the expression of Cyclin D1/Nanog and NF-κB/Bax in dysplastic testes of mice using histological staining, Western blotting, and immunohistochemistry. The results showed that Nanog and Bax expression were significantly higher in dysplastic testicular tissue than in normal tissue (P < 0.01). Cyclin D1 protein expression was higher in normal testis tissue than in dysplastic testis (P < 0.01). NF-κB was highly expressed in cryptorchid and normal testis with no significant difference (P > 0.05). Immunolocalization revealed that Nanog, NF-κB, and Bax were expressed in the cytoplasm of Leydig and spermatogenic cells. Cyclin D1 primarily expressed in the nucleus of Sertoli cells. These findings suggest that altered expression of Nanog, Cyclin D1, and Bax may contribute to testicular dysplasia. This study provides a scientific foundation for detecting testicular dysplasia and selecting appropriate animal models, ultimately informing strategies to improve male reproductive health.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, YangZhou University, Yangzhou, Jiangsu 22500, China; College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xiaoxiang Pan
- College of Veterinary Medicine, YangZhou University, Yangzhou, Jiangsu 22500, China
| | - Luxian Wu
- College of Veterinary Medicine, YangZhou University, Yangzhou, Jiangsu 22500, China
| | - Seth Yaw Afedo
- Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Xinwei Feng
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jin Yang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
2
|
Jin B, Li X, Zhang Q, Zhou W, Liu Y, Dong Z, Chen G, Liu D. Toxicity assessment of microcystin-leucine arginine in planarian Dugesia japonica. Integr Zool 2024; 19:1135-1150. [PMID: 37849408 DOI: 10.1111/1749-4877.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Microcystin-leucine arginine (MC-LR), a representative cyanobacterial toxin, poses an increasing and serious threat to aquatic ecosystems. Despite investigating its toxic effects in various organisms and cells, the toxicity to tissue regeneration and stem cells in vivo still needs to be explored. Planarians are ideal regeneration and toxicology research models and have profound implications in ecotoxicology evaluation. This study conducted a systemic toxicity evaluation of MC-LR, including morphological changes, growth, regeneration, and the underlying cellular and molecular changes after MC-LR exposure, which were investigated in planarians. The results showed that exposure to MC-LR led to time- and dose-dependent lethal morphological changes, tissue damage, degrowth, and delayed regeneration in planarians. Furthermore, MC-LR exposure disturbed the activities of antioxidants, including total superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and total antioxidant capacity, leading to oxidative stress and DNA damage, and then reduced the number of dividing neoblasts and promoted apoptosis. The results demonstrated that oxidative stress and DNA damage induced by MC-LR exposure caused apoptosis. Excessive apoptosis and suppressed neoblast activity led to severe homeostasis imbalance. This study explores the underlying mechanism of MC-LR toxicity in planarians and provides a basis for the toxicity assessment of MC-LR to aquatic organisms and ecological risk evaluation.
Collapse
Affiliation(s)
- Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xiangjun Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qingling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wen Zhou
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Yingyu Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Yang Y, Zhu L, Chen X, Sun Y, Yang R, Zhang N, Zhang Y. Manipulating Silver Nanoparticles with Biomolecular Corona Secreted from Vertebrates to Improve the Loading Capacity and Biocompatibility. ACS NANO 2024; 18:28782-28792. [PMID: 39374417 DOI: 10.1021/acsnano.4c08122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used as nanoagents in biomedical fields, while it is still challenging to improve their loading capacity and biocompatibility in microcarrier delivering systems. Herein, the physicochemical properties of AgNPs were manipulated by forming biomolecular corona derived from bovine serum albumin (AC), and three organisms at various trophic levels: Chlorella sp. (BC1), Daphnia magna (BC2), and zebrafish (BC3). Proteins were identified by chemical composition analysis as the dominant components adsorbed on the surface of AgNPs. Proteomics indicated that AgNPs preferred to bind with low molecular weight (<50 kDa) and hydrophobic proteins with more positively charged residues. Consequently, AC and BC3 displayed stronger adsorption affinity on the surface of AgNPs than BC1 and BC2. Modifications by AC and BC3 effectively alleviated the oxidative stress and cell cycle arrest of AgNPs due to their superior antioxidative ability. However, BC3 with lower hydrophobicity enabled AgNPs to be more biocompatible than AC at subcellular level. Moreover, AC could significantly improve the loading capacity of AgNPs by Chlorella through enhancing caveolin-mediated endocytosis. Notably, owing to the adsorption of abundant Ca2+-binding proteins, BC3-AgNPs could also be internalized by microalgae via Ca2+-dependent clathrin-mediated endocytosis, which makes it a promising approach to deliver AgNPs. The results of this study would provide insights into the development of an efficient strategy to deliver AgNPs based on the microalgae carrier without altering its original properties and functionality.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Liu H, Du X, Zhang Z, Ge K, Chen X, Losiewicz MD, Guo H, Zhang H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. ENVIRONMENT INTERNATIONAL 2024; 188:108771. [PMID: 38805914 DOI: 10.1016/j.envint.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
5
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
6
|
Zhang Z, Du X, Zhang S, Liu H, Fu Y, Wang F, Zhang H. Adverse effects of microcystins on sperm: A systematic review. Toxicology 2023; 490:153507. [PMID: 37030550 DOI: 10.1016/j.tox.2023.153507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Eutrophication of water bodies can lead to cyanobacterial blooms, with the resultant release of microcystins (MCs), posing a threat to the ecosystem and human health. MCs are environmental toxins with male reproductive toxicity. However, there is a dearth of reviews focusing on sperm or spermatogenesis. In this paper, studies on sperm toxicity caused by MCs in recent 20 years were collected and summarized, aiming at revealing the toxic effects and potential mechanisms of MCs on sperm. Based on the previous findings, MCs can decline sperm quality and count, and cause malformation in vertebrates and invertebrates. The reason might be that MCs cause indirect damage to sperm through impairing the structure and function of the testis. The mechanisms of MCs-induced sperm toxicity mainly result from alterations in genetic material, abnormalities in the structure and function of sperm. The epigenetic modifications such as miRNA and piRNA were also involved in MC-LR-induced sperm damage. In conclusion, MCs exposure is harmful to sperm, but its direct effects and mechanisms on sperm are still not known, which remains a significant research direction. Our review will provide a basis for the protection of male reproductive health damage caused by microcystins.
Collapse
Affiliation(s)
- Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Guo X, Meng R, Liu J, Zhang S, Liu H, Du X, Zhang H, Li Y. Microcystin leucine arginine induces human sperm damage: Involvement of the Ca 2+/CaMKKβ/AMPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114845. [PMID: 37001189 DOI: 10.1016/j.ecoenv.2023.114845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
As a common pollutant in the water environment, microcystin leucine arginine (MC-LR) can enter semen and damage the sperm in animals. However, the mechanism by which MC-LR damages human sperm is unclear. Therefore, human sperm samples were obtained from the Henan Provincial Sperm Bank and exposed to different concentrations (0, 1, 10, and 100 μg/L) of MC-LR for 1, 2, 4, and 6 h, to invegest the effects and potential mechanism of MC-LR on sperm. The results showed that MC-LR mainly accumulated in the neck and flagellum of human sperm. Compared to the control group, the sperm capacitation rate and motility were significantly decreased in the 100 μg/L group. After exposure of 100 μg/L of MC-LR, the central microtubule and microtubule doublet of sperm flagellum were blurred, asymmetrical, or even lost. Furthermore, the expression levels of flagellin DNAH17, SPEF2, SPAG16, SPAG6, and CFAP44 in human sperm were reduced. Also, the phosphorylation levels of CaMKKβ and AMPK can be inhibited by MC-LR. These findings revealed that MC-LR can induce functional and structural damage in human sperm, and the Ca2+/CaMKKβ/AMPK pathway may be involved in this process. This study will provide a basis for prevention and treatment of male fertility declines caused by MC-LR.
Collapse
Affiliation(s)
- Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Junjie Liu
- Henan Human Sperm Bank, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yushan Li
- Henan Human Sperm Bank, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Gong Y, Li Y, Liu D, Jiang L, Liang H, Wu Y, Wang F, Yang J. Analysis of lysine acetylation in tomato spot wilt virus infection in Nicotiana benthamiana. Front Microbiol 2023; 14:1046163. [PMID: 36819054 PMCID: PMC9935083 DOI: 10.3389/fmicb.2023.1046163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Kac is a model for all acylation modification studies. Kac plays a critical role in eukaryotes and prokaryotes. It is mainly involved in six major biological functions: gene expression, signal transduction, cell development, protein conversion, metabolism, and metabolite transport. Method We investigated and compared the acetylation modification of proteins in healthy and tomato spot wilt virus (TSWV)-infected Nicotiana benthamiana leaves. Result We identified 3,418 acetylated lysine sites on 1962 proteins acetylation of proteins in the TSWV-infected and control groups were compared; it was observed that 408 sites on 294 proteins were upregulated and 284 sites on 219 proteins (involved in pentose phosphate, photosynthesis, and carbon fixation in photosynthesis) were downregulated after the infection. Overall, 35 conserved motifs were identified, of which xxxkxxxxx_K_ Rxxxxxxxxx represented 1,334 (31.63%) enrichment motifs and was the most common combination. Bioinformatic analysis revealed that most of the proteins with Kac sites were located in the chloroplast and cytoplasm. They were involved in biological processes, such as cellular and metabolic processes. Discussion In conclusion, our results revealed that Kac may participate in the regulation of TSWV infection in N. benthamiana.
Collapse
Affiliation(s)
- Yanwei Gong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Hui Liang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China,*Correspondence: Fenglong Wang, ✉
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China,Jinguang Yang, ✉
| |
Collapse
|
9
|
Xu J, Zhang W, Zhong S, Xie X, Che H, Si W, Tuo X, Xu D, Zhao S. Microcystin-leucine-arginine affects brain gene expression programs and behaviors of offspring through paternal epigenetic information. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159032. [PMID: 36167133 DOI: 10.1016/j.scitotenv.2022.159032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) adversely affects male reproduction and interferes with the development of the offspring. Here, we establish a zebrafish (Danio rerio) model to understand the cross-generational effects of MC-LR in a male-lineage transmission pattern. F0 embryos were reared in water containing MC-LR (0, 5, and 25 μg/L) for 90 days and the developmental indices of F1 and F2 embryos were then measured with no MC-LR treatment. The results show that paternal MC-LR exposure reduced the hatching rate, heart rate and body weight in F1 and F2 generations. Global DNA methylation significantly increased in sperm and testes with the elevation expressions of DNA methyltransferases. Meanwhile, DNA methylation of brain-derived neurotrophic factor (bdnf) promoter was increased in sperm after paternal MC-LR exposure. Subsequently, increased DNA methylation of bdnf promoter and decreased gene expression of bdnf in the brain of F1 male zebrafish were detected. F1 offspring born to F0 males exhibit the depression of BDNF/AKT/CREB pathway and recapitulate these paternal neurodevelopment phenotypes in F2 offspring. In addition, the DNA methylations of dio3b and gad1b promoters were decreased and gene expressions of gad1b and dio3b were increased, accompanied with neurotransmitter disturbances in the brain of F1 male zebrafish after paternal MC-LR exposure. These data revealed that MC-LR displays a potential epigenetic impact on the germ line, reprogramming the epigenetic and transcriptional regulation of brain development, and contributing to aberrant expression of neurodevelopment-related genes and behavior disorders.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weiyun Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Shengzheng Zhong
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xinxin Xie
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weirong Si
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Liu X, Ye JC, Li F, Gao RJ, Wang XX, Cheng JL, Liu BL, Xiang L, Li YW, Cai QY, Zhao HM, Mo CH, Li QX. Revealing microcystin-LR ecotoxicity to earthworm (Eisenia fetida) at the intestinal cell level. CHEMOSPHERE 2023; 311:137046. [PMID: 36419272 DOI: 10.1016/j.chemosphere.2022.137046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Potential adverse effects of microcystin-LR (MC-LR) on soil invertebrates have not been studied. Here we investigated the mechanism of MC-LR toxicity to earthworm (Eisenia fetida) intestine at the individual level and at the cellular level. The results showed an inverse relationship between the bodyweight and survival rate of earthworms over exposure time- and MC-LR doses in soil. Dose-dependent intestinal lesions and disturbances of enzymatic activities (e.g., cellulase, Na+/K+-ATPase, and AChE) were observed, which resulted in intestinal dysfunction. Excessive reactive oxygen species generation led to DNA damage and lipid peroxidation of intestinal cells. The oxidative damage to DNA prolonged cell cycle arrest at the G2/M-phase transition in mitosis, thus stimulating and accelerating apoptosis in earthworm intestine. MC-LR target earthworm intestine tissue. MC-LR at low concentrations can damage earthworm intestine regardless of exposure routes (oral or contact). High toxicity of MC-LR to earthworms delineates its ecological risks to terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong-Jun Gao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiao-Xiao Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
11
|
Zhang S, Liu H, Du X, Chen X, Petlulu P, Tian Z, Shi L, Zhang B, Yuan S, Guo X, Wang Y, Guo H, Zhang H. A new identity of microcystins: Environmental endocrine disruptors? An evidence-based review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158262. [PMID: 36029820 DOI: 10.1016/j.scitotenv.2022.158262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) are widely distributed cyanobacterial toxins in eutrophic waters. At present, the endocrine-disrupting effects of MCs have been extensively studied, but whether MCs can be classified as environmental endocrine disruptors (EDCs) is still unclear. This review is aimed to evaluate the rationality for MCs as to be classified as EDCs based on the available evidence. It has been identified that MCs meet eight of ten key characteristics of chemicals that can be classified as EDCs. MCs interfere with the six processes, including synthesis, release, circulation, metabolism, binding and action of natural hormones in the body. Also, they are fit two other characteristics of EDC: altering the fate of producing/responding cells and epigenetic modification. Further evidence indicates that the endocrine-disrupting effect of MCs may be an important cause of adverse health outcomes such as metabolic disorders, reproductive disorders and effects on the growth and development of offspring. Generally, MCs have endocrine-disrupting properties, suggesting that it is reasonable for them to be considered EDCs. This is of great importance in understanding and evaluating the harm done by MCs on humans.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Quality Control Department, Ninth Hospital of Xi'an, Shanxi, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | | | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Radix polygoni multiflori protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting the HDAC4/JNK pathway. Biomed Pharmacother 2022; 153:113427. [DOI: 10.1016/j.biopha.2022.113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
|
13
|
Zhu P, Chen G, Liu Y, Wang Q, Wang M, Hu T. Microcystin-leucine arginine exhibits adverse effects on human aortic vascular smooth muscle cells in vitro. Toxicol In Vitro 2022; 84:105450. [PMID: 35905885 DOI: 10.1016/j.tiv.2022.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Microcystin-leucine arginine (MC-LR) is a kind of toxin produced by cyanobacteria, which can do harm to human and livestock health. MC-LR can easily enter tissues and organs through the blood circulation and accumulate in certain target organs. Vessels are prone to contact with MC-LR during growth and development. Previous study had demonstrated that MC-LR had potential vascular toxicity. However, it is not clear whether MC-LR has adverse effects on vascular smooth muscle cells. In this study, we evaluated the cytotoxicity of MC-LR exposure (0.01, 0.05, 0.1, 0.5, and 1 μM) on human aortic vascular smooth muscle cells (HAVSMCs) in vitro. The data showed that MC-LR exposure inhibited the HAVSMC proliferation and migration, induced HAVSMC apoptosis, cytoskeleton destruction, S-phase arrest, mitochondrial transmembrane potential (MMP) loss, and reactive oxygen species (ROS) production. In addition, MC-LR exposure resulted in the imbalance between oxidants and antioxidants, increased the caspase-3 and caspase-9 activities, and down-regulated the gene expressions (integrin β1, Rho, ROCK, MLC). Taken together, MC-LR could induce the generation of ROS in HAVSMCs, leading to apoptosis by the mitochondrial signaling pathway. MC-LR could also induce cytoskeletal disruption by integrin-mediated FAK/ROCK signaling pathway, leading to cell cycle arrest and the inhibition of HAVSMCs proliferation and migration. The current findings facilitate an understanding of the mechanism of MC-LR toxicity involved in angiocardiopathy.
Collapse
Affiliation(s)
- Panpan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuanli Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qilong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
14
|
Zhang T, Zheng Y, Han R, Kuang T, Min C, Wang H, Zhao Y, Wang J, Yang L, Che D. Effects of pyruvate on early embryonic development and zygotic genome activation in pigs. Theriogenology 2022; 189:77-85. [PMID: 35732099 DOI: 10.1016/j.theriogenology.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/05/2023]
Abstract
Pyruvate is an important energy substance during early embryonic development of mammals. However, the underlying mechanisms of pyruvate during early embryonic development in pigs and its role in zygotic genome activation (ZGA) are not fully understood. Here, based on a previous RNA-seq dataset of porcine early embryos, we found that pyruvate metabolism-related genes started to be expressed at the 4-cell stage and that pyruvate metabolism-related genes were correlated with porcine ZGA marker genes. To determine the function of pyruvate in porcine embryos, in vitro fertilization (IVF) embryos were cultured in PZM-3 medium (control group); modified PZM-3 medium that only contains pyruvate and lactate plus salts (+P group); or modified PZM-3 medium lacking pyruvate (-P group). The 4-cell arrest rate at 72 h was significantly increased in the -P group compared to the +P group (P < 0.05). In addition, we observed that the reactive oxygen species (ROS) level was significantly increased and that the adenosine triphosphate (ATP) level was significantly (P < 0.05) decreased in the -P group compared to the +P group. Moreover, the expression of ZGA marker genes and SIRT1 protein in embryos was significantly decreased in the -P group compared to the +P group (P < 0.05). Furthermore, the acetylation level of H3K9 was significantly decreased (P < 0.05) and the methylation level of H3K9 was significantly increased (P < 0.05) in the -P group compared to the +P group. In summary, our findings demonstrate that pyruvate affects early embryonic development in pigs by promoting ZGA and reducing oxidative stress levels.
Collapse
Affiliation(s)
- Tianrui Zhang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yingying Zheng
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Rui Han
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Tianya Kuang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Changguo Min
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, 130118, China.
| | - Junjun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
15
|
Liu H, Zeng X, Ma Y, Chen X, Losiewicz MD, Du X, Tian Z, Zhang S, Shi L, Zhang H, Yang F. Long-term exposure to low concentrations of MC-LR induces blood-testis barrier damage through the RhoA/ROCK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113454. [PMID: 35367887 DOI: 10.1016/j.ecoenv.2022.113454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an emerging water pollutant, produced by cyanobacteria, has an acute testicular toxicity. However, little is known about the chronic toxic effects of MC-LR exposure on the testis at environmental concentrations and the underlying molecular mechanisms. In this study, C57BL/6 J mice were exposed to different low concentrations of MC-LR for 6, 9 and 12 months. The results showed that MC-LR could cause testis structure loss, cell abscission and blood-testis barrier (BTB) damage. Long-term exposure of MC-LR also activated RhoA/ROCK pathway, which was accompanied by the rearrangement of α-Tubulin. Furthermore, MC-LR reduced the levels of the adherens junction proteins (N-cadherin and β-catenin) and the tight junction proteins (ZO-1 and Occludin) in a dose- and time-dependent way, causing BTB damage. MC-LR also reduced the expressions of Occludin, ZO-1, β-catenin, and N-cadherin in TM4 cells, accompanied by a disruption of cytoskeletal proteins. More importantly, the RhoA inhibitor Rhosin ameliorated these MC-LR-induced changes. Together, these new findings suggest that long-term exposure to MC-LR induces BTB damage through RhoA/ROCK activation: involvement of tight junction and adherens junction changes and cytoskeleton disruption. This study highlights a new mechanism for MC-LR-induced BTB disruption and provides new insights into the cause and treatment of BTB disruption.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
16
|
Xu G, Luo Y, Xu D, Ma Y, Chen Y, Han X. Male reproductive toxicity induced by Microcystin-leucine-arginine (MC-LR). Toxicon 2022; 210:78-88. [DOI: 10.1016/j.toxicon.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
|
17
|
Tian Z, Liu H, Chen X, Losiewicz MD, Wang R, Du X, Wang B, Ma Y, Zhang S, Shi L, Guo X, Wang Y, Zhang B, Yuan S, Zeng X, Zhang H. The activated ATM/p53 pathway promotes autophagy in response to oxidative stress-mediated DNA damage induced by Microcystin-LR in male germ cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112919. [PMID: 34715501 DOI: 10.1016/j.ecoenv.2021.112919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) is an intracellular toxin with multi-organ toxicity and the testis is one of its important target organs. Although there is increasing research on MC-LR in male reproductive toxicity, the association between DNA damage and autophagy induced by MC-LR in male germ cells are still unclear. Therefore, it is important to explore the mechanism of MC-LR-induced DNA damage and the role of the activated ATM/p53 signaling pathway in testicular toxicity. The present study showed that MC-LR exposure significantly reduced gonadal index and induced pathological damage of the testes in mice. In addition, MC-LR increased the oxidative stress-related indicator hydroxyl radical, accompanied by increased levels of DNA damage-related indicators gamma-H2AX, 8-hydroxy-2'-deoxyguanosine, the olive tail moment (OTM) and DNA content of comet tail (TailDNA%) in trailing cells. Moreover, MC-LR activated the ATM/p53 pathway by enhancing the phosphorylation levels of ATM, CHK2 and p53 proteins, and then led to cell autophagy, ultimately triggering disrupted testicular cell arrangement, reduced sperm count and spermatogenic cell shedding. Importantly, after pretreatment with the antioxidant NAC, the expression levels of DNA damage-related indicators and the extent of damage in male germ cells were significantly reduced. Furthermore, pretreatment with the ATM inhibitor KU55933 could reduce the occurrence of autophagy and mitigate testicular toxicity of MC-LR through inhibiting the activation of the ATM/p53 pathway. These results indicate that MC-LR-induced oxidative stress can activate the DNA damage-mediated ATM/p53 signalling pathway to induce autophagy in male germ cells. This study provides a novel insight to further clarify the reproductive toxicity caused by MC-LR and to protect male reproductive health.
Collapse
Affiliation(s)
- Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Bingqian Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
18
|
Zhang J, Wang P, Cui Y. Long noncoding RNA NEAT1 inhibits the acetylation of PTEN through the miR-524-5p /HDAC1 axis to promote the proliferation and invasion of laryngeal cancer cells. Aging (Albany NY) 2021; 13:24850-24865. [PMID: 34837887 PMCID: PMC8660614 DOI: 10.18632/aging.203719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) is abnormally expressed in numerous tumors and functions as an oncogene, but the role of NEAT1 in laryngocarcinoma is largely unknown. Our study validated that NEAT1 expression was markedly upregulated in laryngocarcinoma tissues and cells. Downregulation of NEAT1 dramatically suppressed cell proliferation and invasion through inhibiting miR-524-5p expression. Additionally, NEAT1 overexpression promoted cell growth and metastasis, while overexpression of miR-524-5p could reverse the effect. NEAT1 increased the expression of histone deacetylase 1 gene (HDAC1) via sponging miR-524-5p. Mechanistically, overexpression of HDAC1 recovered the cancer-inhibiting effects of miR-524-5p mimic or NEAT1 silence by deacetylation of tensin homolog deleted on chromosome ten (PTEN) and inhibiting AKT signal pathway. Moreover, in vivo experiments indicated that silence of NEAT1 signally suppressed tumor growth. Taken together, knockdown of NEAT1 suppressed laryngocarcinoma cell growth and metastasis by miR-524-5p/HDAC1/PTEN/AKT signal pathway, which provided a potential therapeutic target for laryngocarcinoma.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Laboratory, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| | - Ping Wang
- Department of Hematology, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| | - Yanli Cui
- Department of Laboratory, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| |
Collapse
|
19
|
Gao L, Cui AQ, Wang J, Chen J, Zhang XY, Lin ZJ, Chen YH, Zhang C, Wang H, Xu DX. Paternal exposure to microcystin-LR induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in placental labyrinth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60032-60040. [PMID: 34155591 DOI: 10.1007/s11356-021-14725-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine arginine (MC-LR) has reproductive and developmental toxicities. Previous studies indicated that gestational exposure to MC-LR induced fetal growth restriction in mice. The aim of this study was to further evaluate the effect of paternal MC-LR exposure before mating on fetal development. Male mice were intraperitoneally injected with either normal saline or MC-LR (10 μg/kg) daily for 35 days. Male mouse was then mated with female mice with 1:1 ratio. There was no significant difference on the rates of mating and pregnancy between MC-LR-exposed male mice and controls. Body weight and crown-rump length were reduced in fetuses whose fathers were exposed to MC-LR. Despite no difference on relative thickness of labyrinthine layer, cell proliferation, as measured by Ki67 immunostaining, was reduced in labyrinth layer of MC-LR-exposed mice. Moreover, blood sinusoid area in labyrinth layer was decreased in the fetus whose father was exposed to MC-LR before mating. Correspondingly, cross-sectional area of CD34-positive blood vessel in labyrinth layer was lower in fetuses whose fathers were exposed to MC-LR than in controls. These results provide evidence that paternal MC-LR exposure before mating induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in labyrinth layer.
Collapse
Affiliation(s)
- Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - An-Qi Cui
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Jing Lin
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol 2021; 11:700947. [PMID: 34395273 PMCID: PMC8360675 DOI: 10.3389/fonc.2021.700947] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
Collapse
Affiliation(s)
- Rihan Hai
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liuer He
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
21
|
Qu J, Han Y, Zhao Z, Wu Y, Lu Y, Chen G, Jiang J, Qiu L, Gu A, Wang X. Perfluorooctane sulfonate interferes with non-genomic estrogen receptor signaling pathway, inhibits ERK1/2 activation and induces apoptosis in mouse spermatocyte-derived cells. Toxicology 2021; 460:152871. [PMID: 34303733 DOI: 10.1016/j.tox.2021.152871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread persistent organic pollutant. Both epidemiological survey and our previous in vivo study have revealed the associations between PFOS exposure and spermatogenesis disorder, while the underlying mechanisms are far from clear. In the present study, GC-2 cells, a mouse spermatocyte-derived cell line, was used to investigate the toxic effects of PFOS and its hypothetical mechanism of action. GC-2 cells were treated with PFOS (0, 50, 100 and 150 μM) for 24 h or 48 h. Results demonstrated that PFOS dose-dependently inhibited cell viability, induced G0/G1 cell cycle arrest and triggered apoptosis, which might be partly explained by the decrease in cyclin D1, PCNA and Bcl-2 protein expression; increase in Bax protein expression; and activation of caspase-9, -3. In addition, PFOS did not directly transactivate or repress estrogen receptors (ERs) in gene reporter assays, whereas the protein levels of both ERα and ERβ were significantly altered and the downstream ERK1/2 phosphorylation was inhibited by PFOS. Furthermore, pretreatment with specific ERα agonist PPT (1 μM) significantly attenuated the above PFOS-induced effects while specific ERβ agonist DPN (1 μM) accelerated them. These results suggest that PFOS may induce growth inhibition and apoptosis via non-genomic estrogen receptor/ERK1/2 signaling pathway in GC-2 cells, which provides a novel insight regarding the potential role of ERs in mediating PFOS-triggered spermatocyte toxicity.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China.
| | - Yu Han
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Ziyan Zhao
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ying Lu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Gang Chen
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Junkang Jiang
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
22
|
Xu L, Zhang H, Wang Y, Guo W, Gu L, Yang A, Ma S, Yang Y, Wu K, Jiang Y. H3K14 hyperacetylation‑mediated c‑Myc binding to the miR‑30a‑5p gene promoter under hypoxia postconditioning protects senescent cardiomyocytes from hypoxia/reoxygenation injury. Mol Med Rep 2021; 23:468. [PMID: 33880587 PMCID: PMC8097758 DOI: 10.3892/mmr.2021.12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous study reported that microRNA (miR)‑30a‑5p upregulation under hypoxia postconditioning (HPostC) exert a protective effect on aged H9C2 cells against hypoxia/reoxygenation injury via DNA methyltransferase 3B‑induced DNA hypomethylation at the miR‑30a‑5p gene promoter. This suggests that miR‑30a‑5p may be a potential preventative and therapeutic target for ischemic heart disease in aged myocardium. The present study aimed to investigate the underlying mechanisms of miR‑30a‑5p transcription in aged myocardium in ischemic heart disease. Cardiomyocytes were treated with 8 mg/ml D‑galactose for 9 days, and then exposed to hypoxic conditions. Cell viability was determined using a cell viability assay. Expression levels of histone deacetylase 2 (HDAC2), LC3B‑II/I, beclin‑1 and p62 were detected via reverse transcription‑quantitative PCR and western blotting. Chromatin immunoprecipitation‑PCR and luciferase reporter assays were performed to evaluate the effect of c‑Myc binding and activity on the miR‑30a‑5p promoter in senescent cardiomyocytes following HPostC. It was found that HPostC enhanced the acetylation levels of H3K14 at the miR‑30a‑5p gene promoter in senescent cardiomyocytes, which attributed to the decreased expression of HDAC2. In addition, c‑Myc could positively regulate miR‑30a‑5p transcription to inhibit senescent cardiomyocyte autophagy. Mechanically, it was observed that increased H3K14 acetylation level exposed to romidepsin facilitated c‑Myc binding to the miR‑30a‑5p gene promoter region, which led to the increased transcription of miR‑30a‑5p. Taken together, these results demonstrated that HDAC2‑mediated H3K14 hyperacetylation promoted c‑Myc binding to the miR‑30a‑5p gene promoter, which contributed to HPostC senescent cardioprotection.
Collapse
Affiliation(s)
- Lingbo Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Huiping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanhua Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Wei Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lingyu Gu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Anning Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shengchao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Yang
- Department of Nuclear Medicine, The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Kai Wu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yideng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
23
|
Liu H, Tian Z, Guo Y, Liu X, Ma Y, Du X, Wang R, Zhang S, Shi L, Guo H, Zhang H. Microcystin-leucine arginine exposure contributes to apoptosis and follicular atresia in mice ovaries by endoplasmic reticulum stress-upregulated Ddit3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144070. [PMID: 33288253 DOI: 10.1016/j.scitotenv.2020.144070] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an intracellular toxin to cause reproduction toxicity, is produced by blooming cyanobacteria and widely distributed in eutrophic waters. It is revealed that MC-LR-induced female reproductive toxicity is more severe than male reproductive toxicity. Previous studies mainly focused on male reproductive toxicity, and the molecular mechanisms of MC-LR-induced apoptosis, follicular atresia and infertility in female remain largely unclear. Here, it was found that MC-LR treatment could induce apoptosis, inflammation, follicular atresia, and decrease of gonadal index in mice ovaries. RNA-Seq data showed that the up-regulation of DNA-damage inducible transcript 3 (Ddit3) under endoplasmic reticulum (ER) stress had predominantly regulatory role in MC-LR-induced apoptotic pathway. Furthermore, MC-LR exposure promoted cleavage of activating transcription factor 6 (ATF6, 50kd), inositol-requiring enzyme 1 (Ire1) expression, phosphorylation of IRE1, mitogen-activated protein kinase 5 (Map3k5) and Ddit3 expression, which was accompanied by the upregulation of death receptor 5 (Dr5) and active-caspase-3, and a decrease in Bcl-2 expression. ER stress inhibitor 4-Phenyl butyric acid (4-PBA) ameliorated these MC-LR-induced changes in protein or mRNA level. More importantly, knockdown of Ddit3 suppressed MC-LR-induced cell apoptosis and follicular atresia by directly regulating Dr5 and Bcl-2. Additionally, it was also found that MC-LR increased Map3k5 phosphorylation by inhibiting protein phosphatase 2A (PP2A) activity, and then promoted Ddit3 expression. In short, our data suggests that Ddit3 promotes MC-LR-induced mice ovarian cells apoptosis and follicular atresia via ER stress activation, which provides a new insight into the relation between infertility in females and the emerging water pollutant MC-LR.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
24
|
Zhang S, Du X, Liu H, Losiewic MD, Chen X, Ma Y, Wang R, Tian Z, Shi L, Guo H, Zhang H. The latest advances in the reproductive toxicity of microcystin-LR. ENVIRONMENTAL RESEARCH 2021; 192:110254. [PMID: 32991922 DOI: 10.1016/j.envres.2020.110254] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Michael D Losiewic
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
Zhao S, Yuan C, Tuo X, Zhou C, Zhao Q, Shen T. MCLR induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in Sertoli cells. CHEMOSPHERE 2021; 263:127868. [PMID: 32828052 DOI: 10.1016/j.chemosphere.2020.127868] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Microcystins-LR (MCLR) is a potent reproductive system toxin. We have previously shown that MCLR induced endoplasmic reticulum (ER) stress and apoptosis in testis. ER is the main calcium storage site in cells, and its calcium homeostasis plays an important role in the regulation of apoptosis. Hence, in the present study, we have investigated the role of calcium (Ca2+) in inducing apoptosis and how it affect the mitochondria and endoplasmic reticulum in TM4 cells. Our study found that MCLR induced an increase in Ca2+ concentration in TM4 cells. Compared to the controls, MCLR induced phosphorylation of calmodulin-dependent protein kinase II (CaMKII) which was involved in MAPKs activation, resulting in the induction of mitochondrial apoptosis pathways. Ca2+ chelator Bapta-AM partially reversed MCLR-induced apoptosis, confirming the possible involvement of calcium homeostasis disruption after MCLR exposure. Meanwhile, MCLR activated unfolded protein response and activated the ER apoptotic pathway by activating caspase-12. In addition, exposure to MCLR causes mitochondrial defects and increased apoptosis by up-regulating caspase 3 and cytosol cytochrome c expression. Collectively, these results demonstrated that MCLR disturbed calcium homeostasis, which caused ER-mitochondria dysfunction, ultimately promoted cell apoptosis in Sertoli cells.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chunyang Yuan
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Chengfan Zhou
- School of Public Health, Anhui Medical University, Hefei, China
| | - Qihong Zhao
- School of Public Health, Anhui Medical University, Hefei, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|