1
|
Hashmi MA, Malik A, Abul Qais F, Khan MA, Alhumaydhi FA, Younus H. An insight into the binding and inhibition of eye ζ-crystallin by the environmental toxin arsenic: implications in eye diseases. J Biomol Struct Dyn 2023; 41:9134-9142. [PMID: 36326451 DOI: 10.1080/07391102.2022.2141891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Arsenic contamination is highly prevalent in food chain, soil and groundwater. Continuous exposure to elevated levels of this environmental toxin is a global concern. Studies have reported enriched accumulation of arsenic in the eyes compared to other body organs leading to various eye diseases. Here, the impact of arsenic exposure on the enzymatic eye ζ-crystallin has been investigated. Arsenic inhibited the activity of the enzyme with an IC50 value of 35 µM. It decreased the free thiol group content of ζ-crystallin due to protein oxidation. The binding of arsenic with ζ-crystallin was explored using biophysical and computational tools. The enzyme undergoes some conformational changes upon arsenic binding. The binding constant (Kb) was determined to be 1.2 × 102 M-1. Thermodynamic parameters were determined by isothermal titration calorimetry (ITC) and the binding energy (ΔG) was calculated to be -3.52 kcal/mol. Molecular docking studies helped in visualizing the amino acid residues (especially Cys165) of the enzyme involved in binding with arsenic. Continuous arsenic exposure is expected to increase the eye crystallin-related abnormalities, elevating the risk of cataractogenesis. Therefore, proper measures need to be taken by authorities to control the contamination of arsenic in the environment and groundwater.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Fahad Abdulrahman Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Hashmi MA, Malik A, Arsalan A, Khan MA, Younus H. Elucidation of kinetic and structural properties of eye lens ζ-crystallin: an in vitro and in silico approach. J Biomol Struct Dyn 2023; 41:1178-1192. [PMID: 34927573 DOI: 10.1080/07391102.2021.2017351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Arabian Camelus dromedarius contains significant concentration of eye lens ζ-crystallin. This enzyme is also present in other life forms including humans, however in lower catalytic amounts. The recombinant camel ζ-crystallin was expressed in the E. coli BL21 (DE3) pLysS strain and purified using HisTrap column. The Km of the enzyme for 9,10-phenanthrenequinone (9,10-PQ) substrate and NADPH cofactor was determined to be 11.66 and 50.93 µM, respectively. The Vmax for 9,10-PQ and NADPH was obtained as 23.19 and 19.98 μM min-1, respectively. The optimum activity of the purified enzyme was found to be at pH 6.0 and at 55 °C. Different physico-chemical parameters were analysed including instability index (II), aliphatic index (AI) and the GRAVY index to establish proper characterization. The sequence of the recombinant ζ-crystallin was subjected to homology modelling using SWISS-MODEL webserver followed by validation of the modelled target structure. The evaluation of the modelled ζ-crystallin was performed by several parameters including Ramachandran plot, Z-score values followed by molecular dynamics (MD) simulation. The cumulative analysis of the physico-chemical, quantitative, qualitative and the essential dynamics of simulation of ζ-crystallin and its complexes with 9,10-PQ and NADPH helped in verifying the acceptable quality and stability of the ζ-crystallin structure.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Arsalan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Zakariya SM, Furkan M, Arsalan A, Nabi F, Hassan N, Younus H, Khan RH. Melamine induced human serum albumin aggregates: Its possible role in amyloidogenesis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Schwartz M, Neiers F, Charles JP, Heydel JM, Muñoz-González C, Feron G, Canon F. Oral enzymatic detoxification system: Insights obtained from proteome analysis to understand its potential impact on aroma metabolization. Compr Rev Food Sci Food Saf 2021; 20:5516-5547. [PMID: 34653315 DOI: 10.1111/1541-4337.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
The oral cavity is an entry path into the body, enabling the intake of nutrients but also leading to the ingestion of harmful substances. Thus, saliva and oral tissues contain enzyme systems that enable the early neutralization of xenobiotics as soon as they enter the body. Based on recently published oral proteomic data from several research groups, this review identifies and compiles the primary detoxification enzymes (also known as xenobiotic-metabolizing enzymes) present in saliva and the oral epithelium. The functions and the metabolic activity of these enzymes are presented. Then, the activity of these enzymes in saliva, which is an extracellular fluid, is discussed with regard to the salivary parameters. The next part of the review presents research evidencing oral metabolization of aroma compounds and the putative involved enzymes. The last part discusses the potential role of these enzymatic reactions on the perception of aroma compounds in light of recent pieces of evidence of in vivo oral metabolization of aroma compounds affecting their release in mouth and their perception. Thus, this review highlights different enzymes appearing as relevant to explain aroma metabolism in the oral cavity. It also points out that further works are needed to unravel the effect of the oral enzymatic detoxification system on the perception of food flavor in the context of the consumption of complex food matrices, while considering the impact of food oral processing. Thus, it constitutes a basis to explore these biochemical mechanisms and their impact on flavor perception.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Philippe Charles
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Carolina Muñoz-González
- Instituto de investigación en Ciencias de la Alimentación (CIAL), (CSIC-UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
5
|
Ahmad S, Arsalan A, Hashmi A, Khan MA, Siddiqui WA, Younus H. A comparative study based on activity, conformation and computational analysis on the inhibition of human salivary aldehyde dehydrogenase by phthalate plasticizers: Implications in assessing the safety of packaged food items. Toxicology 2021; 462:152947. [PMID: 34534558 DOI: 10.1016/j.tox.2021.152947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Phthalate plasticizers are commonly used in various consumer-end products. Human salivary aldehyde dehydrogenase (hsALDH) is a detoxifying enzyme which defends us from the toxic aldehydes. Here, the effect of phthalates [Di-2-ethylhexyl phthalate (DEHP), Diethyl phthalate (DEP) and Dibutyl phthalate (DBP)] on hsALDH has been investigated. These plasticizers inhibited hsALDH, and the IC50 values were 0.48 ± 0.04, 283.20 ± 0.09 and 285.00 ± 0.14 μM for DEHP, DEP and DBP, respectively. DEHP was the most potent inhibitor among the three plasticizers. They exhibited mixed-type linear inhibition with inclination towards competitive-non-competitive inhibition. They induced both tertiary and secondary structural changes in the enzyme. Quenching of intrinsic hsALDH fluorescence in a constant manner was observed with a binding constant (Kb) of 8.91 × 106, 2.80 × 104, and 1.31 × 105 M-1, for DEHP, DEP and DBP, respectively. Computational analysis showed that these plasticizers bind stably in the proximity of hsALDH catalytic site, reciprocating via non-covalent interactions with some of the amino acids which are evolutionary conserved. Therefore, exposure to these plasticizers inhibits hsALDH which increases the risk of aldehyde induced toxicity, adversely affecting oral health. The study has implications in assessing the safety of packaged food items which utilize phthalates.
Collapse
Affiliation(s)
- Sumbul Ahmad
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdullah Arsalan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Waseem Ahmad Siddiqui
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Khezerlou A, Dehghan P, Moosavy MH, Kochakkhani H. Assessment of Heavy Metal Contamination and the Probabilistic Risk via Salad Vegetable Consumption in Tabriz, Iran. Biol Trace Elem Res 2021; 199:2779-2787. [PMID: 32918714 DOI: 10.1007/s12011-020-02365-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/27/2020] [Indexed: 12/07/2022]
Abstract
Considering the importance of vegetables as a source of micronutrients and fibers in a balanced diet, there is still a concern that vegetables could also be a source of toxic heavy metal contaminants. The study aimed to determine the concentrations of lead (Pb), cadmium (Cd), arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn) in the salad vegetables sold in Tabriz city, Iran, and to evaluate the probabilistic health risk assessment. The amount of toxic metals in 240 samples was evaluated by atomic absorption spectrophotometer (AAS) method. The average levels of toxic metals in the samples were found to be 1.59, 1.26, 1.42, 4.89, 13.38, 1.01, and 32.65 mg/kg for Pb, Cd, As, Cr, Cu, Ni, and Zn, respectively. According to the results, Zn and Cu had the highest concentration, whereas the lowest concentration belonged to Ni. The rank order of the toxic elements in the samples based on target hazard quotient (THQ) values was Cr > Cd > As > Pb > Cu> Zn > Ni, for both females and males. Leafy vegetables had a higher amount of total target hazard quotient (TTHQ) than tuber crops for both males and females. The carcinogenic risks of As and Pb were 0.032 and 0.03 in the females and 0.22 and 0.19 in males. According to the finding, there may be a potential risk of toxic metals, especially Cr, Cd, and As, for both females and males in Tabriz through the consumption of vegetables.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Drug Applied Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Mir-Hassan Moosavy
- Food Hygiene & Aquatic Department, Faculty of Veterinary Medicine, Tabriz University, Tabriz, Iran
| | - Hojjat Kochakkhani
- Food Science and Technology Department, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Arsalan A, Hashmi MA, Zofair SFF, Ahmad S, Khan MA, Younus H. Activation of yeast alcohol dehydrogenase in the presence of citrate stabilized gold nanoparticles: An insight into its interaction and modulation mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhang W, Bu S, Bai H, Ma C, Ma L, Wei H, Liu X, Li Z, Wan J. A sensitive biosensor for determination of pathogenic bacteria using aldehyde dehydrogenase signaling system. Anal Bioanal Chem 2020; 412:7955-7962. [PMID: 32879993 DOI: 10.1007/s00216-020-02928-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Aldehyde dehydrogenase (ALDH) was first developed as an enzymatic signaling system of a biosensor for sensitive point-of-care detection of pathogenic bacteria. ALDH and specific aptamers to Salmonella typhimurium (S. typhimurium), as organic components, were embedded in organic-inorganic nanocomposites as a biosensor signal label, integrating the functions of signal amplification and target recognition. The biosensing mechanism is based on the fact that ALDH can catalyze rapid oxidation of acetaldehyde into acetic acid, resulting in pH change with portable pH meter readout. The altered pH exhibited a linear relationship with the logarithm of S. typhimurium from 102 to 108 CFU/mL and detection limit of 46 CFU/mL. Thus, the proposed biosensor has potential application in the diagnosis of pathogenic bacteria.
Collapse
Affiliation(s)
- Wenguang Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Huasong Bai
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Chengyou Ma
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, Jilin, China
| | - Li Ma
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Hongguo Wei
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Xiu Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Zehong Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China.
| |
Collapse
|
9
|
Immobilization of laccase on Sepharose-linked antibody support for decolourization of phenol red. Int J Biol Macromol 2020; 161:78-87. [PMID: 32505629 DOI: 10.1016/j.ijbiomac.2020.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Laccases which are considered as "green tools" in biotechnology have potential to degrade toxic contaminants/synthetic dyes present in industrial effluents. The loss in activity and stability of laccases are key challenges faced in their potential industrial applications. Here, laccase from Trametes versicolor (polypore mushroom) was immobilized on Sepharose-linked antibody support to carry out the decolourization of phenol red. This support was prepared by covalent linking of anti-laccase antibodies to CNBr activated Sepharose at pH 8.5, and then laccase was immobilized on this affinity support at pH 5.0. The amount of laccase immobilized was approximately 33 mg per gram of the affinity support, giving an immobilization yield of 83.4%. The immobilized enzyme displayed an activity of 3.88 U with an effectiveness factor (η) of 0.90. Immobilization of laccase led to significant enhancement in thermal and storage stability. The immobilized enzyme retained 44% of its activity after 10 cycles of continuous use. The decolourization of phenol red dye obtained by immobilized and soluble laccase after 6 h of incubation at 50 °C was 80 and 56%, respectively. Thus, immobilization of laccase on Sepharose-linked antibody support leads to remarkable improvement in its various properties, making it more versatile for industrial applications.
Collapse
|