1
|
Raqib R, Akhtar E, Ahsanul Haq M, Ahmed S, Haque F, Chowdhury MAH, Shahriar MH, Begum BA, Eunus M, Sarwar G, Parvez F, Sharker Y, Ahsan H, Yunus M. Reduction of household air pollution through clean fuel intervention and recovery of cellular immune balance. ENVIRONMENT INTERNATIONAL 2023; 179:108137. [PMID: 37579572 PMCID: PMC11062205 DOI: 10.1016/j.envint.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND We conducted a clean fuel intervention trial (Bangladesh Global Environmental and Occupational Health (GEOHealth) (NCT02824237) with liquefied petroleum gas (LPG) for 26 months among rural Bangladeshi women chronically exposed to household air pollution (HAP) from biomass fuel (BMF) use. We aimed to evaluate the effect of HAP reduction following LPG intervention on immune response outcome. METHODS We supplied LPG cook stove and refills in cylinder in 200 households for 26 months. We measured personal exposure to HAP [particulate matter 2.5 (PM2·5), black carbon (BC) and carbon monoxide (CO)] in 200 women (main cook) by personal monitors at pre- and post-intervention. Immune function was assessed before and after intervention, in blood collected within 2 weeks of HAP measurements. Primary endpoints included reduction in HAP, lymphocyte proliferation and oxidative stress response, and alterations in T and B cell proportions. FINDINGS Exclusive LPG use for 26 months resulted in significant reduction in PM2·5 (43.5%), BC (13%) and CO (48%) exposure in the women. For one unit decrease in BC, Treg cells and memory B cells increased by 7% and 34% respectively, in the peripheral circulation. One unit decrease in CO was significantly associated with increase in early B cells and plasmablasts by 66% and 5% respectively. For one unit decrease in BC, percent-dividing cells, proliferation and expansion indices increased by 2%, 0.4%, and 1%, respectively. INTERPRETATION Reduced personal exposure to HAP through clean fuel intervention was related to a return towards cellular immune balance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mahbub Eunus
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Golam Sarwar
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Faruque Parvez
- Mailman School of Public Health, Columbia University, New York, USA
| | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, USA; U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | |
Collapse
|
2
|
Witinok-Huber R, Clark ML, Volckens J, Young BN, Benka-Coker ML, Walker E, Peel JL, Quinn C, Keller JP. Effects of household and participant characteristics on personal exposure and kitchen concentration of fine particulate matter and black carbon in rural Honduras. ENVIRONMENTAL RESEARCH 2022; 214:113869. [PMID: 35820656 PMCID: PMC10696621 DOI: 10.1016/j.envres.2022.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.
Collapse
Affiliation(s)
- Rebecca Witinok-Huber
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Ethan Walker
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Casey Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Joshua P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Kumar S, Jain MK. Interrelationship of Indoor Particulate Matter and Respiratory Dust Depositions of Women in the Residence of Dhanbad City, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4668-4689. [PMID: 34414538 DOI: 10.1007/s11356-021-15584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Women spend relatively more time in indoor environments in developing countries. Exposure to various indoor air pollutants leads them to higher health risks according to household air quality in which they reside. Particulate matter (PM) exposure with their exposure duration inside the household plays a significant role in women's respiratory problems. This study measured size-segregated particulate matter concentrations in 63 residences at different locations. Respiratory dust depositions (RDDs) for 118 women in their different respiratory regions like head airway (HD), tracheobronchial (TB), and alveolar (AL) regions for the three PM size fractions (PM10, PM2.5, and PM1) were investigated. For different positions like light exercise and the sitting condition, RDDs values found for AL region were 0.091 μgmin-1 (SD: 0.067, 0.012-0.408) and 0.028 μgmin-1 (SD: 0.021, 0.003-0.126) for PM10, 0.325 μgmin-1 (SD: 0.254, 0.053-1.521) and 0.183 μgmin-1 (SD: 0.143, 0.031-0.857) for PM2.5, 0.257 μgmin-1 (SD: 0.197, 0.043-1.04) and 0.057 μgmin-1 (SD: 0.044, 0.009-0.233) respectively for PM1 to females. RDDs values in the AL region significantly increase as PM10 (11%), PM2.5 (68%), and PM1 (21%), confirming that for women, the AL region is the most prominent affected zone by fine particles (PM2.5).
Collapse
Affiliation(s)
- Shravan Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Manish Kumar Jain
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
4
|
Adam MG, Tran PTM, Cheong DKW, Chandra Sekhar S, Tham KW, Balasubramanian R. Assessment of Home-Based and Mobility-Based Exposure to Black Carbon in an Urban Environment: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18095028. [PMID: 34068742 PMCID: PMC8126254 DOI: 10.3390/ijerph18095028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
The combustion of fossil fuels is a significant source of particulate-bound black carbon (BC) in urban environments. The personal exposure (PE) of urban dwellers to BC and subsequent health impacts remain poorly understood due to a lack of observational data. In this study, we assessed and quantified the levels of PE to BC under two exposure scenarios (home-based and mobility-based exposure) in the city of Trivandrum in India. In the home-based scenario, the PE to BC was assessed in a naturally ventilated building over 24 h each day during the study period while in the mobility-based scenario, the PE to BC was monitored across diverse microenvironments (MEs) during the day using the same study protocol for consistency. Elevated BC concentrations were observed during the transport by motorcycle (26.23 ± 2.33 µg/m3) and car (17.49 ± 2.37 µg/m3). The BC concentrations observed in the MEs decreased in the following order: 16.58 ± 1.38 µg/m3 (temple), 13.78 ± 2.07 µg/m3 (restaurant), 11.44 ± 1.37 µg/m3 (bus stop), and 8.27 ± 1.88 µg/m3 (home); the standard deviations represent the temporal and spatial variations of BC concentrations. Overall, a relatively larger inhaled dose of BC in the range of 148.98–163.87 µg/day was observed for the mobility-based scenario compared to the home-based one (118.10–137.03 µg/day). This work highlights the importance of reducing PE to fossil fuel-related particulate emissions in cities for which BC is a good indicator. The study outcome could be used to formulate effective strategies to improve the urban air quality as well as public health.
Collapse
Affiliation(s)
- Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
| | - Phuong Thi Minh Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Faculty of Environment, The University of Danang—University of Science and Technology, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City 50608, Vietnam
| | - David Kok Wai Cheong
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Sitaraman Chandra Sekhar
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Kwok Wai Tham
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Correspondence: ; Tel.: +65-6516-5135; Fax: +65-6779-1635
| |
Collapse
|
5
|
Arora P, Sharma D, Kumar P, Jain S. Assessment of clean cooking technologies under different fuel use conditions in rural areas of Northern India. CHEMOSPHERE 2020; 257:127315. [PMID: 32535364 DOI: 10.1016/j.chemosphere.2020.127315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
The study was conducted to assess the performance of improved and traditional cookstoves using wood as a fuel and three combinations of other fuel mixes - (i) wood and cow dung, (ii) wood and mustard stalks, and (iii) cow dung and mustard stalks). Energy and emission parameters such as specific energy consumption (SEC), emission factors (EFs) of carbon monoxide (CO), particulate matter (PM) and black carbon (BC) were used to compare four different types of cookstoves. These included top-feed forced draft (TF-FD), top-feed natural draft (TF-ND), front-feed natural draft (FF-ND) and front-feed traditional (FF-TR) cookstoves. Controlled cooking test (CCT) was used as the test protocol. The results showed the performance of improved cookstove technologies can vary based on the fuel used for cooking. It was observed that emission factors for PM and CO increased by 67-96% and 45-90% respectively when all three improved cookstoves were tested with three fuel combinations against wood as cooking fuel. Among the tested cookstoves, a marked difference was observed between performance of forced draft and natural draft cookstoves. Forced draft cookstoves emitted higher amount of all pollutant emissions compared to natural draft cookstoves when used with mustard stalks in combination with either wood or cowdung. The results are of critical importance given that forced draft cookstoves have been promoted in geographical regions where fuel mix use is prevalent. Therefore, forced draft cookstove might not be the right choice when the goal is climate mitigation and reduction in impact on human health. It is imperative to study comprehensively the influence of various field variables on performance of cookstoves, which have severe implications on the performance of cookstoves.
Collapse
Affiliation(s)
- Pooja Arora
- Department of Energy and Environment, TERI School of Advanced Studies (earlier TERI University), 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Deepti Sharma
- Department of Energy and Environment, TERI School of Advanced Studies (earlier TERI University), 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU27XH, United Kingdom
| | - Suresh Jain
- Department of Civil & Environmental Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517 506, India.
| |
Collapse
|