1
|
Li Y, Zhang J, Wen X, Mazarji M, Chen S, Liu Q, Zhao S, Feng L, Li G, Zhou H, Pan J. Advancing anaerobic digestion with MnO 2-modified biochar: Insights into performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176303. [PMID: 39299339 DOI: 10.1016/j.scitotenv.2024.176303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The use of bio-based composites to enhance the methane production in anaerobic digestion has attracted considerable attention. Nevertheless, the study of electron transfer mechanisms and the applications of biochar/MnO2 (MBC) in complex systems remains largely unexplored. Biochar composited with MnO2 at 10:1 mass ratio (MBC10) increased the content of volatile fatty acids by 9.09 % during acidogenic phase. During the methanogenic experiments using acetate, cumulative methane production (CMP) rose by 5.83 %, and in the methanogenic experiments using food waste, CMP increased by 24.32 %. Microbial community analysis indicated an enrichment of Syntrophomonas, Bacilli, and Methanosaetaceae in the MBC10 group. This enrichment occurred mainly due to the redox capability of MnO2 enhancing MBC capacitance, thereby facilitating microbial electron transfer processes. Additionally, under 2 g/L ammonia nitrogen concentration and 30 g/L organic load, the CMP of MBC10 increased by 12.74 % and 9.44 %, respectively, compared to the BC600 group. This study illuminates MBC's electron transfer mechanisms and applications, facilitating its wider practical adoption and fostering future innovations.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
| | - Jinglei Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Xinran Wen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuo Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Qiang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Shenggeng Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Zhe Y, Cheng H, Cheng F, Song H, Pan Z. Enhancing the Startup Rate of Microbial Methanogenic Systems through the Synergy of β-lactam Antibiotics and Electrolytic Cells. Microorganisms 2024; 12:734. [PMID: 38674678 PMCID: PMC11051723 DOI: 10.3390/microorganisms12040734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The slow startup and suboptimal efficiency of microbial carbon sequestration and methane-production systems have not been fully resolved despite their contribution to sustainable energy production and the reduction of greenhouse gas emissions. These systems often grapple with persistent hurdles, including interference from miscellaneous bacteria and the slow enrichment of methanogens. To address these issues, this paper examines the synergistic effect of coupling β-lactam antibiotics with an electrolytic cell on the methanogenic process. The results indicated that β-lactam antibiotics exhibited inhibitory effects on Campylobacteria and Alphaproteobacteria (two types of miscellaneous bacteria), reducing their relative abundance by 53.03% and 87.78%, respectively. Nevertheless, it also resulted in a decrease in hydrogenogens and hindered the CO2 reduction pathway. When coupled with an electrolytic cell, sufficient electrons were supplied for CO2 reduction to compensate for the hydrogen deficiency, effectively mitigating the side effects of antibiotics. Consequently, a substantial improvement in methane production was observed, reaching 0.57 mL·L-1·d-1, exemplifying a remarkable 6.3-fold increase over the control group. This discovery reinforces the efficiency of methanogen enrichment and enhances methane-production levels.
Collapse
Affiliation(s)
- Yuting Zhe
- Institute of Resources and Environmental Engineering, Engineering Research Center of CO2 Emission Reduction and Resource Utilization—Ministry of Education of the People’s Republic of China, Shanxi University, Taiyuan 030006, China; (Y.Z.)
| | - Huaigang Cheng
- Institute of Resources and Environmental Engineering, Engineering Research Center of CO2 Emission Reduction and Resource Utilization—Ministry of Education of the People’s Republic of China, Shanxi University, Taiyuan 030006, China; (Y.Z.)
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Engineering Research Center of CO2 Emission Reduction and Resource Utilization—Ministry of Education of the People’s Republic of China, Shanxi University, Taiyuan 030006, China; (Y.Z.)
| | - Huiping Song
- Institute of Resources and Environmental Engineering, Engineering Research Center of CO2 Emission Reduction and Resource Utilization—Ministry of Education of the People’s Republic of China, Shanxi University, Taiyuan 030006, China; (Y.Z.)
| | - Zihe Pan
- Institute of Resources and Environmental Engineering, Engineering Research Center of CO2 Emission Reduction and Resource Utilization—Ministry of Education of the People’s Republic of China, Shanxi University, Taiyuan 030006, China; (Y.Z.)
| |
Collapse
|
3
|
Yuan Y, Zhang G, Fang H, Guo H, Li Y, Li Z, Peng S, Wang F. Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13075-13088. [PMID: 38240967 DOI: 10.1007/s11356-024-31941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Sewer systems play vital roles in wastewater treatment facilities, and the microbial communities contribute significantly to the transformation of domestic wastewater. Therefore, this study conducted a 180-day experiment on a sewer system and utilized the high-throughput sequencing technology to characterize the microbial communities. Additionally, community assembly analysis was performed to understand the early-stage dynamics within the sewer system. The results demonstrated that the overall diversity of microbial communities exhibited fluctuations as the system progressed. The dominant phyla observed were Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, accounting for over 85.4% of the total relative abundances. At the genus level, bacteria associated with fermentation displayed a high relative abundance, particularly during days 75 to 180. A random-forest machine-learning model identified a group of microbes that confirmed the substantial contribution of fermentation. During the process of fermentation, microorganisms predominantly utilized propionate formation as the main pathway for acidogenesis, followed by acetate and butyrate formation. In terms of nitrogen and sulfur cycles, dissimilatory nitrate reduction and assimilatory sulfate reduction played significant roles. Furthermore, stochastic ecological processes had a dominant effect during the experiment. Dispersal limitation primarily governed the assembly process almost the entire experimental period, indicating the strong adaptability and metabolic plasticity of microorganisms in response to environmental variations. This experiment provides valuable insights into the metabolic mechanisms and microbial assembly associated with sewer systems.
Collapse
Affiliation(s)
- Yiming Yuan
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China.
| | - Hongyuan Fang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| | - Haifeng Guo
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Yongkang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Zezhuang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Siwei Peng
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Fuming Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
4
|
Wang G, Sun C, Fu P, Zhang B, Zhu J, Li Q, Zhang J, Chen R. Mechanistic insights into synergistic facilitation of copper/zinc ions and dewatered swine manure-derived biochar on anaerobic digestion of swine wastewater. ENVIRONMENTAL RESEARCH 2024; 240:117429. [PMID: 37865320 DOI: 10.1016/j.envres.2023.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Biochar-assisted anaerobic digestion (AD) has been proposed an advanced system for swine wastewater (SW) management. However, the effects of metallic nutrients in SW, such as copper/zinc ions (Cu2+/Zn2+), on the biochar-assisted AD of SW are not well understood. This study investigated the influences of individual Cu2+/Zn2+ or dewatered swine manure-derived biochar, as well as their combined additions, on the AD of SW. The results showed that exposure to 50 mg/L Cu2+/Zn2+ temporary inhibited methane production, but the addition of 20 g/L biochar alleviated this inhibition by shortening the methanogenic lag time and increasing methane yield. Following a period of acclimation, both Cu2+/Zn2+ and biochar promoted methane production, although metagenomic analysis revealed distinct mechanisms underlying their promotion. Cu2+/Zn2+ enhanced ATP processing, including electron exchange between NADH/NAD+ and succinate/fumarate transformation, by 26.0-35.8%. Additionally, the gene encoding Coenzyme M methylation was upregulated by 36.2% along with enrichments of Methanocullus and Methanosarcina, contributing to accelerated hydrolysis and methanogenesis rates by 54.7% and 44.8%, respectively. On the other hand, biochar mainly stimulated bacterial F-type ATPase activities by 28.4%, likely facilitating direct interspecies electron transfer between Geobacter and Methanosarcina for syntrophic methanogenesis. The combined addition of Cu2+/Zn2+ and biochar resulted in "win-win" benefits, significantly increasing the maximum methane production rate from 40.3 mL CH4/d to 53.7 mL CH4/d. Moreover, the introduction of biochar into AD of SW facilitated the transformation of more Cu2+/Zn2+ from a reducible Fe-Mn oxides form to a residual form, which potentially reduced the metallic toxicity of the digestate for soil amendment. The findings of this study provide novel insights into understanding the synergistic impacts of heavy metals and biochar in regulating SW during AD, as well as the management of associated digestate.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Changxi Sun
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Jinglin Zhu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| |
Collapse
|
5
|
Yuan T, Sun R, Miao Q, Wang X, Xu Q. Analysing the mechanism of food waste anaerobic digestion enhanced by iron oxide in a continuous two-stage process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:610-620. [PMID: 37832210 DOI: 10.1016/j.wasman.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The food waste (FW) digestion performance can be enhanced by introducing iron oxide (IO) into digesters. However, the role of IO in continuous two-stage digesters in enhancing the FW anaerobic digestion remains unclear. In this study, the effect of IO on the bioenergy recovery from a two-stage digestion process was investigated. The bioenergy recovery was significantly increased by up to 208.43 % with IO addition. The activities of dehydrogenase, α-amylase, and protease increase by 0.82-1.44, 7.24-14.56 and 7.97-20.45 times, respectively, as compared with that of the blank. With IO addition, the metabolic pathway in hydrolytic-acidogenic (HA) reactor shifted from lactic acid fermentation to butyric fermentation, which promoted stable methane production in methanogenic (MG) reactor. The activity of coenzyme F420 increased by 19.19-39.01 times, indicating that IO facilitated FW digestion by promoting hydrogenotrophic methanogenesis. The enhancement in the enzyme activity was attributable to the Fe2+ generated by dissimilatory iron reduction. According to the microbial analysis, IO enhanced interspecies hydrogen transfer between Methanobacterium and Syntrophomonas. Furthermore, IO improved direct interspecies electron transfer between Geobacter sulfurreducens and Methanosarcina. The effluent recirculation strategy greatly facilitated the hydrolysis and acidification of FW, which was critical for improving the two-stage process performance.
Collapse
Affiliation(s)
- Tugui Yuan
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Ran Sun
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qianming Miao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Xue Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
6
|
Li J, Chen Q, Fan Y, Wang F, Meng J. Improved methane production of two-phase anaerobic digestion by cobalt: efficiency and mechanism. BIORESOURCE TECHNOLOGY 2023; 381:129123. [PMID: 37146694 DOI: 10.1016/j.biortech.2023.129123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Two-phase anaerobic digestion (AD) is a promising technology, but its performance is sensitive to methanogen. In this study, the effect of cobalt (Co) on two-phase AD was investigated and the enhanced mechanism was revealed. Though no obvious effect of Co2+ was observed in acidogenic phase, the activity of methanogens was significantly affected by Co2+ with an optimal Co2+ concentration of 2.0 mg/L. Ethylenediamine-N'-disuccinic acid (EDDS) was the most effective for improving Co bioavailability and increasing methane production. The role of Co-EDDS in improving methanogenic phase was also verified by operating three reactors for two months. The Co-EDDS supplement increased the level of Vitamin B12 (VB12) and coenzyme F420, and enriched Methanofollis and Methanosarcina, thereby successfully improving methane production and accelerating reactor recovery from ammonium and acid wastewater treatment. This study provides a promising approach to improve the efficiency and stability of anaerobic digester.
Collapse
Affiliation(s)
- Jianzheng Li
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiyi Chen
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiyang Fan
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Furao Wang
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Meng
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Wang X, Lei Z, Zhang Z, Shimizu K, Lee DJ, Khanal SK. Use of nanobubble water bioaugmented anaerobically digested sludge for high-efficacy energy production from high-solids anaerobic digestion of corn straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160825. [PMID: 36502974 DOI: 10.1016/j.scitotenv.2022.160825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
An increasing attention has been paid to the secure and sustainable management of agricultural wastes, especially lignocellulosic biomass. Nanobubble water (NBW) contains 106-108 bubbles/mL with diameter <1000 nm. Although previous studies have examined the enhancement effects of NBW on methane production from organic solid wastes, the NBW-based anaerobic digestion (AD) system is still restrained from practical application due to the large increase in AD reactor volume, generation of wastewater, and increase in energy consumption as well. In this study, NBW bioaugmentation of anaerobically digested sludge for the first time was performed for high-solids AD of corn straw. Results show that cellulase, xylanases and lignin peroxidase activities were increased by 2-55% during the NBW bioaugmentation process. Significant enrichment of hydrolytic/acidogenic bacteria and methanogenic archaea were noticed in the NBW bioaugmented sludge. This study clearly demonstrated 47% increase in methane production from high-solids AD of corn straw when O2-NBW bioaugmented sludge was applied, achieving a net energy gain of 5138 MJ/t-volatile solids of corn straw with an energy recovery of 34%. The NBW-based high-solids AD system can provide a novel and sustainable management solution for renewable energy production from agricultural wastes, targeting the reduction of environmental pollution and energy crisis.
Collapse
Affiliation(s)
- Xuezhi Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Oura-gun, Itakura, Gunma 374-0193, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
8
|
Zhang S, Guan W, Sun H, Zhao P, Wang W, Gao M, Sun X, Wang Q. Intermittent energization improves microbial electrolysis cell-assisted thermophilic anaerobic co-digestion of food waste and spent mushroom substance. BIORESOURCE TECHNOLOGY 2023; 370:128577. [PMID: 36603750 DOI: 10.1016/j.biortech.2023.128577] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Microbial electrolysis cell-assisted thermophilic anaerobic digestion (MEC-TAD) is a promising method to improve anaerobic co-digestion efficiency; however, its application is restricted by high energy consumption. To improve the energy use efficiency of MEC-TAD, this study investigated the effect of different intermittent energization strategies on thermophilic co-digestion performance. Results revealed that an 18 h-ON/6h-OFF energization schedule resulted in the fastest electron transfer rate and the highest methane yield (364.3 mL/g VS). Mechanistic analysis revealed that 18 h-ON/6h-OFF resulted in the enrichment of electroactive microorganisms and increased abundance of enzyme-coding genes associated with energy metabolism (ntp, nuo, atp), electron transfer (pilA, nfrA2, ssuE), and the hydrogenotrophic methanogenic pathway. Finally, energy balance analysis revealed that 18 h-ON/6h-OFF had the highest net energy benefit (2.52 kJ) and energy conversion efficiency (110.76 %). Therefore, intermittent energization of MEC-TAD using an 18 h-ON/6h-OFF schedule can provide improved performance and more energy savings.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weijie Guan
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pan Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanqing Wang
- Tianjin College, University of Science and Technology Beijing, Tianjin 301811, China
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin 301811, China.
| |
Collapse
|
9
|
Pretreatment in Vortex Layer Apparatus Boosts Dark Fermentative Hydrogen Production from Cheese Whey. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dark fermentation (DF) is a promising process for mitigating environmental pollution and producing “green” H2. However, wider implementation and scaling of this technology is hampered by insufficient process efficiency. In this work, for the first time, the effect of innovative pretreatment of cheese whey (CW) in a vortex layer apparatus (VLA) on characteristics and DF of CW was studied. Pretreatment in VLA resulted in a heating of the CW, slight increase in pH, volatile fatty acids, iron, and reduction in fat, sugar, and chemical oxygen demand (COD). The biochemical hydrogen potential test and analysis of H2 production kinetics confirmed the significant potential of using VLA in enhancement of dark fermentative H2 production. The maximum potential H2 yield (202.4 mL H2/g COD or 3.4 mol H2/mol hexose) was obtained after pretreatment in VLA for 45 s and was 45.8% higher than the control. The maximum H2 production rate after 5 and 45 s of pretreatment was 256.5 and 237.2 mL H2/g COD/d, respectively, which is 8.06 and 7.46 times higher than in the control. The lag phase was more than halved as a function of the pretreatment time. The pretreatment time positively correlated with the total final concentration of Fe2+ and Fe3+ and negatively with the lag phase, indicating a positive effect of pretreatment in VLA on the start of H2 production.
Collapse
|
10
|
Zhang S, Ma X, Sun H, Xie D, Zhao P, Wang Q, Wu C, Gao M. Semi-continuous mesophilic-thermophilic two-phase anaerobic co-digestion of food waste and spent mushroom substance: Methanogenic performance, microbial, and metagenomic analysis. BIORESOURCE TECHNOLOGY 2022; 360:127518. [PMID: 35760249 DOI: 10.1016/j.biortech.2022.127518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The methanogenic efficiency and system stability of anaerobic co-digestion of food waste (FW) and spent mushroom substance (SMS) are important for its application. A 90-day semi-continuous study was conducted to compare the co-digestion performance of an ethanologenic-methanogenic two-phase system and an acidogenic-methanogenic system using FW and SMS as substrates. The results showed that the ethanologenic-methanogenic system increased the contents of ethanol and acetate in the hydrolytic acidification phase. Microbial-community analysis showed that ethanologenic-methanogenic system enriched hydrolytic acidifying bacteria and methanogens such as Methanoculleus, resulting in an increase in the average methane yield of methanogenic phase by 1.91-2.43 times at the same organic loading rate (OLR = 3.0-4.0 g-VS·L-1·d-1). Metagenomic analysis indicated that the ethanologenic-methanogenic system increased the abundance of enzyme-encoding genes and promoted the degradation of acetate and CO2/H2, thereby enhancing methanogenic metabolic pathways, compared to the acidogenic-methanogenic system.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Ma
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Xie
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pan Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
11
|
Liu X, Sun X, Liu R, Bai L, Cui P, Xu H, Wang C. Assessing the enhanced reduction effect with the addition of sulfate based P inactivating material during algal bloom sedimentation. CHEMOSPHERE 2022; 300:134656. [PMID: 35447217 DOI: 10.1016/j.chemosphere.2022.134656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
The typical harm effect of algal bloom sedimentation is to increase sulfides level in surroundings, threatening aquatic organisms and human health; whereas, P inactivating materials containing sulfate are commonly attempted to be used to immobilize reactive P or to flocculate excessive algae in water columns for eutrophication control. In this study, variations in sulfate reduction during algal bloom sedimentation with the addition of sulfate based inactivating materials was comprehensively assessed based on using Al2(SO4)3 with comparison to AlCl3. The results showed that addition of Al2(SO4)3 had more substantial effect on overlying water and sediment properties compared to those of ACl3. Al2(SO4)3 can enhance sulfate reduction, resulting in temporary increase of sulfides (p < 0.01) and quick decrease of various Fe (p < 0.01) in overlying water and then promoting the formation of FeS and FeS2 (determined by EXAFS analysis) in sediments. Most importantly, the increased sulfides, as well as the physical barrier on sediment formed due to Al2(SO4)3 addition, enhanced the transformation of sulfides to odorous contaminants, increasing odorous contaminants (especially methyl thiols) production by approximately one order of magnitude in overlying water. Furthermore, the increased sulfides facilitated to the enrichment of microorganisms related to S cycles (Thiobacillu with relative abundance of 23.8%) and even promoted to enrich bacterial genus potentially with pathogenicity (Treponema) in sediments. The impacts of sulfate tended to be regulated by algae concentration; however, careful management was recommended for sulfate based inactivating materials application to control eutrophication with algal blooms.
Collapse
Affiliation(s)
- Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Sun
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rui Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Xuzhou Xinsheng Luyuan Cyclic Economy Industrial Investment & Development Co. Ltd., Xuzhou, 221000, China
| | - Leilei Bai
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
12
|
Zhao Y, Mu H, Su Y, Zhang Y, Qiao X, Zhao C. Promotion of granular activated carbon on methanogenesis of readily acidogenic carbohydrate-rich waste at low inoculation ratio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152642. [PMID: 34968585 DOI: 10.1016/j.scitotenv.2021.152642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Although granular activated carbon (GAC) supplementation into food waste anaerobic digestion system is an efficient means to enhance methane production. As yet, little is known whether GAC supplementation is suitable for the extreme condition of pH below 4.5, which occurs in the use of readily acidogenic carbohydrate-rich waste (RACW) as methanogenic substrate when at low inoculation/substrate (I/S) ratio. This study investigated the effects of GAC on RACW anaerobic digestion under different inoculation/substrate (I/S) ratios. It was found that the addition of GAC was a preferred alternative method to enhancing I/S ratio for promoting methane production from RACW. The additive dose of 20 g/L was recommended for the methanogenesis of RACW at low I/S of 1:2, and the methane yield was enhanced by 12 times (505 mL/g-VS) compared with that (42 mL/g-VS) from the control. This promotion resulted from the apparently solving the over-acidogenesis problem and the adjustment of pH to the desired range. Further investigation revealed that the added GAC enhanced the activities of acetate kinase and coenzyme F420, that engaged in the acidogenic and methanogenic reactions. Meanwhile, the decrease of hydrogenase and increase of c-Cyts implied that the metabolism of direct interspecies electron transfer (DIET) was probably stimulated by GAC. Microbial investigation inferred that the enriched hydrogenotrophic methanogens and DIET-mediated syntrophic partners of Geobacter/Syntrophomonas with Methanosarcina were responsible for the enhanced methane yield.
Collapse
Affiliation(s)
- Yue Zhao
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Hui Mu
- School of Resources and Environment, University of Jinan, Jinan 250022, China.
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, China
| | - Yongfang Zhang
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Xiaowei Qiao
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Chunhui Zhao
- School of Resources and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
13
|
Xu R, Fang S, Zhang L, Cheng X, Huang W, Wang F, Fang F, Cao J, Wang D, Luo J. Revealing the intrinsic drawbacks of waste activated sludge for efficient anaerobic digestion and the potential mitigation strategies. BIORESOURCE TECHNOLOGY 2022; 345:126482. [PMID: 34864182 DOI: 10.1016/j.biortech.2021.126482] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is an effective approach for waste activated sludge (WAS) disposal with substantial recovery of valuable substrates. Previous studies have extensively explored the correlations of common operational parameters with AD efficiency, but the impacts of intrinsic characteristics of WAS on the AD processes are generally underestimated. This study focused on disclosing the association of intrinsic drawbacks in WAS with AD performance, and found that the cemented WAS structure, low fraction of biomass and various high levels of inhibitory pollutants (e.g., organic pollutants and heavy metals), as the integral parts of WAS all greatly restricted the AD performance. The main potential strategies and underlying mechanisms to mitigate the restrictions for efficient WAS digestion, including the practical pretreatment methods, bioaugmentation and aided substances addition, were critically analyzed. Also, future directions for the improvement of WAS digestion were proposed from the perspectives of technical, management and economic aspects.
Collapse
Affiliation(s)
- Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
14
|
Combined pretreatment using CaO and liquid fraction of digestate of rice straw: Anaerobic digestion performance and electron transfer. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Ji Y, Zhang Z, Zhuang Y, Liao R, Zhou Z, Chen S. Molecular-level variation of dissolved organic matter and microbial structure of produced water during its early storage in Fuling shale gas field, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38361-38373. [PMID: 33733405 DOI: 10.1007/s11356-021-13228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Shale gas-produced water (PW), the waste fluid generated during gas production, contains a large number of organic contaminants and high salinity matrix. Previous studies generally focused on the end-of-pipe treatment of the PW and ignored the early collection process. In this study, the transformation of the molecular composition and microbial community structure of the PW in the transportation and storage process (i.e., from the gas-liquid separator to the storage tank) were investigated. As the PW was transported from the gas-liquid separator to the portable storage tank, the dissolved organic matter (DOM) showed greater saturation, less oxidation, and lower polarity. DOMs with high O/C and low H/C ratios (numbers of oxygen and hydrogen divided by numbers of carbon) were eliminated, which may be due to precipitation or adsorption by the solids suspended in the PW. The values of double-bond equivalent (DBE), DBE/C (DBE divided by the number of carbon), and aromatic index (AI) decreased, likely because of the microbial degradation of aromatic compounds. The PW in the gas-liquid separator presented a lower biodiversity than that in the storage tank. The microbial community in the storage tank showed the coexistence of anaerobes and aerobes. Genera related to biocorrosion and souring were detected in the two facilities, thus indicating the necessity of more efficient anticorrosion strategies. This study helps to enhance the understanding of the environmental behavior of PW during shale gas collection and provides a scientific reference for the design and formulation of efficient transportation and storage strategies to prevent and control the environmental risk of shale gas-derived PW.
Collapse
Affiliation(s)
- Yufei Ji
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yiling Zhuang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rugang Liao
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Zejun Zhou
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
16
|
Cui Y, Mao F, Zhang J, He Y, Tong YW, Peng Y. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways. CHEMOSPHERE 2021; 272:129863. [PMID: 33588141 DOI: 10.1016/j.chemosphere.2021.129863] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The underlying mechanisms of biochar enhance high-solid anaerobic digestion (HSAD) of food waste were investigated with a focus on the cell viability, microbial community, and methanogenic pathways. This study assessed the effects of different dosages of biochar in HSAD. Optimal biochar dosage was found to be 25 g/L, which produced accumulative methane yields of up to 251 mL CH4/g VS significantly promote volatile fatty acid degradations, especially in butyric acid concentrations. Effects of biochar with a dosage of 25 g/L on the cell viability showed that viable cells based on cell membrane integrity increased from 2.9% to 6.4%. Meanwhile, intact and highly active cells with high DNA content were probably involved in direct interspecies electron transfer (DIET) via membrane-bound electron transport proteins. Further analysis demonstrated that Syntrophomonas and methanogens Methanosarcina &Methanocelleus were selectively enriched by biochar, which resulted in the methanogenic pathways shifting from acetoclastic/hydrogenotrophic methanogenic pathways to more metabolically diverse methanogenic pathways. Accordingly, biochar-mediated DIET was possibly established between Syntrophomonas and Methanosarcina species due to those viable cells. In conclusion, biochar is a feasible additive in enhancing HSAD methanogenic performance.
Collapse
Affiliation(s)
- Yuxuan Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Feijian Mao
- NUS Environmental Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China.
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yinghong Peng
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Engineering Research Center for Nanotechnology, Shanghai, 200241, China
| |
Collapse
|
17
|
Wang C, Wang Z, Xu H, Bai L, Liu C, Jiang H, Cui P. Organic matter stabilized Fe in drinking water treatment residue with implications for environmental remediation. WATER RESEARCH 2021; 189:116688. [PMID: 33278722 DOI: 10.1016/j.watres.2020.116688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/31/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Fe-based materials used to adsorb P are commonly considered to be limited by the increased Fe lability, while Fe in drinking water treatment residue (DWTR) shows stable P adsorption abilities. Accordingly, this study aimed to gain insight into Fe lability in DWTR as compared to FeCl3 and Fe2(SO4)3 using Fe fractionation, EXAFS, and high-throughput sequencing technologies. The results showed that compared to Fe2(SO4)3 and FeCl3, Fe was relatively stable in the DWTR under the effects of organic matter, sulfides, and anaerobic conditions. Typically, the addition of FeCl3 and Fe2(SO4)3 enhanced Fe mobility in sediment and overlying water, promoting the formation of Fe-humin acid and ferrous sulfides (FeS and FeS2). However, the addition of DWTR, even at relatively high doses of Fe, has limited impact on Fe mobility. The addition remarkably increased oxidizable Fe in sediment (by approximately 63%), causing Fe to be dominated by oxidizable and residual fractions (like those in raw DWTR); EXAFS analysis also suggested that Fe-humin acid increased substantially with the addition of DWTR, becoming the main Fe species in sediment (with a relative abundance of 50.1%). Importantly, the Fe distributions were stable in sediment with DWTR added, which demonstrated that organic matter stabilized the Fe in the DWTR. Further analysis indicated that all materials promoted the enrichment of bacterial genera potentially related to Fe metabolism (e.g., Bacteroides, Dok59, and Methanosarcina). Fe2O3 in the FeCl3 and Fe2(SO4)3 groups and Fe-HA in the DWTR group were the key species affecting the microbial communities. Overall, the stabilizing effect of organic matter on Fe in DWTR could be used to develop Fe-based materials to enhance Fe stability for environmental remediation.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zhanling Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Graduate University of Chinese Academy of Sciences
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
18
|
Enhancing anaerobic syntrophic propionate degradation using modified polyvinyl alcohol gel beads. Heliyon 2020; 6:e05665. [PMID: 33319110 PMCID: PMC7725729 DOI: 10.1016/j.heliyon.2020.e05665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 11/21/2022] Open
Abstract
Modified polyvinyl alcohol (PVA) beads serve as effective anaerobic microbe immobilization carriers. PVA beads were mixed with different conductive materials, activated carbon, magnetite, and green tuff stone powder. In this study, modified PVA beads were used to investigate the effect of using, promote methane production, and enhance direct interspecies electron transfer (DIET) on the anaerobic syntrophic degradation of propionate, which is an essential intermediate process for generating methane in anaerobic digesters. The batch experiment showed that PVA mixed with activated carbon had the highest methane conversion rate of 72%, whereas the rates for control (sludge) was 61%. Moreover, the lag time during the second and third feedings was shorter by 5-fold than for the first feeding when modified PVA beads were added. The syntrophic propionate degrading microorganisms in the modified PVA beads was Syntrophobacter and Methanobacterium, either Methanoculleus or Methanosaeta. The modified PVA beads hold at least 10 times larger syntrophs than normal PVA. Therefore, composite PVA with conductive materials can promote methane production, accelerate propionate consumption, and enhance electron transfer in related microbial species.
Collapse
|
19
|
Men Y, Zheng L, Zhang L, Li Z, Wang X, Zhou X, Cheng S, Bao W. Effects of Adding Zero Valent Iron on the Anaerobic Digestion of Cow Manure and Lignocellulose. Front Bioeng Biotechnol 2020; 8:590200. [PMID: 33195155 PMCID: PMC7655976 DOI: 10.3389/fbioe.2020.590200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies showed that adding zero valent iron (ZVI) can increase the methane production and degradation rate of organic waste by improving the performance of anaerobic digester. However, our study firstly found that ZVI (37 μm, 10 g/L) inhibited the anaerobic digestion (AD) of cow manure and lignocellulose. ZVI significantly increased the methanogenic rate of cow manure in the first 6 days, but decreased the accumulative methane yield and volatile fatty acids yield by 10.3 and 12%, respectively. The effect of ZVI on AD of liquid biomass separated from cow manure was positive, but the effect on solid biomass was negative. These results indicated that ZVI enhanced the AD of easily biodegradable organics but inhibited the biodegradation of refractory organics (lignocellulose). By analyzing the varying effects of ZVI in diverse anaerobic systems, it was found that the effects were influenced by the characteristics of substrate and inoculum-substrate ratio. This study suggested that only proper ZVI addition can improve the AD process depending on the feeding materials.
Collapse
Affiliation(s)
- Yu Men
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Lei Zheng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Lingling Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zifu Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xuemei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoqin Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wenjun Bao
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of Ministry of Science and Technology of People's Republic of China, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
20
|
Wang G, Li Y, Sheng L, Xing Y, Liu G, Yao G, Ngo HH, Li Q, Wang XC, Li YY, Chen R. A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. BIORESOURCE TECHNOLOGY 2020; 314:123777. [PMID: 32665106 DOI: 10.1016/j.biortech.2020.123777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this review, progress in the potential mechanisms of biochar amendment for AD performance promotion was summarized. As adsorbents, biochar was beneficial for alleviating microbial toxicity, accelerating refractory substances degradation, and upgrading biogas quality. The buffering capacity of biochar balanced pH decreasing caused by volatile fatty acids accumulation. Moreover, biochar regulated microbial metabolism by boosting activities, mediating electron transfer between syntrophic partners, and enriching functional microbes. Recent studies also suggested biochar as potential useful additives for membrane fouling alleviation in anaerobic membrane bioreactors (AnMBR). By analyzing the reported performances based on different operation models or substrate types, debatable issues and associated research gaps of understanding the real role of biochar in AD were critically discussed. Accordingly, Future perspectives of developing biochar-amended AD technology for real-world applications were elucidated. Lastly, with biochar-amended AD as a core process, a novel integrated scheme was proposed towards high-efficient energy-resource recovery from various bio-wastes.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|