1
|
Fučík J, Jašek V, Hamplová M, Navrkalová J, Zlámalová Gargošová H, Mravcová L. Assessing Lettuce Exposure to a Multi-Pharmaceutical Mixture in Soil: Insights from LC-ESI-TQ Analysis and the Impact of Biochar on Pharmaceutical Bioavailability. ACS OMEGA 2024; 9:39065-39081. [PMID: 39310173 PMCID: PMC11411693 DOI: 10.1021/acsomega.4c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, potentially endangering agricultural crops and human health. This study aimed to evaluate various aspects related to the presence of pharmaceuticals in the lettuce-soil system, including bioconcentration factors (BCFs), translocation factors (TFs), ecotoxicological effects, the influence of biochar on the PhAC bioavailability, persistence in soil, and associated environmental and health risks. Lettuce (Lactuca sativa L.) was exposed to a mixture of 25 PhACs in two scenarios: initially contaminated soil (ranging from 0 to 10,000 ng·g-1) and soil irrigated with contaminated water (ranging from 0 to 1000 μg·L-1) over a 28-day period. The findings revealed a diverse range of BCFs (0.068-3.7) and TFs (0.032-0.58), indicating the uptake and translocation potential of pharmaceuticals by lettuce. Significant ecotoxicological effects on L. sativa, including weight change and increased mortality, were observed (p < 0.05). Interestingly, biochar did not significantly affect PhAC uptake by L. sativa (p > 0.05), while it significantly influenced the soil degradation kinetics of 12 PhACs (p < 0.05). Additionally, the estimated daily intake of PhACs through the consumption of L. sativa suggested negligible health risks, although concerns arose regarding the potential health risks if other vegetable sources were similarly contaminated with trace residues. Furthermore, this study evaluated the environmental risk associated with the emergence of antimicrobial resistance (AMR) in soil, as medium to high. In conclusion, these findings highlight the multifaceted challenges posed by pharmaceutical contamination in agricultural environments and emphasize the importance of proactive measures to mitigate the associated risks to both environmental and human health.
Collapse
Affiliation(s)
- Jan Fučík
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Marie Hamplová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jitka Navrkalová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Ludmila Mravcová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Huidobro-López B, León C, López-Heras I, Martínez-Hernández V, Nozal L, Crego AL, de Bustamante I. Untargeted metabolomic analysis to explore the impact of soil amendments in a non-conventional wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161890. [PMID: 36731565 DOI: 10.1016/j.scitotenv.2023.161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As non-conventional wastewater treatment, vegetation filters make the most of the natural attenuation processes that occur in soil to remove contaminants, while providing several environmental benefits. However, this practice may introduce contaminants of emerging concern (CECs) and their transformation products (TPs) into the environment. A potential improvement to the system was tested using column experiments containing soil (S) and soil amended with woodchips (SW) or biochar (SB) irrigated with synthetic wastewater that included 11 selected CECs. This study evaluated: i) known CECs attenuation and ii) unknown metabolites formation. Known CECs attenuation was assessed by total mass balance by considering both water and soil media. An untargeted metabolomic strategy was developed to assess the formation of unknown metabolites and to identify them in water samples. The results indicated that SB enhanced CECs attenuation and led to the formation of fewer metabolites. Sorption and biodegradation processes were favored by the bigger surface area of particles in SB column, especially for compounds with negative charges. Incorporating woodchips into soil shortened retention times in the column, which reduced attenuation phenomena and resulted in the formation of significantly more metabolites. Incomplete biodegradation reactions, fostered by shorter retention times in SW column could mainly explain these results.
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Carlos León
- Carlos III University, Department of Bioengineering, E-28911 Madrid, Spain
| | | | | | - Leonor Nozal
- Alcalá University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, E-28871 Madrid, Spain
| | - Antonio L Crego
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Irene de Bustamante
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Geology, Geography and Environment, E-28871 Madrid, Spain
| |
Collapse
|
3
|
Cui Q, Xia J, Peng L, Zhao X, Qu F. Positive Effects on Alfalfa Productivity and Soil Nutrient Status in Coastal Wetlands Driven by Biochar and Microorganisms Mixtures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.798520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biochar application in reclaiming degraded soils and improving plant productivity has been recognized as a promising technology. Yet, the impacts of biochar and mixtures with compound effective microorganisms (CEM) on alfalfa growth and soil quality in coastal wetlands are poorly understood. A greenhouse experiment was set to systematically reveal the impacts of biochar and biochar combined with CEM on alfalfa growth traits, nutrient uptake, biomass, soil quality, and enzyme activities. Eight treatments were included: (1) control (CK−CEM), (2) 10-g/kg biochar (B10−CEM); (3) 20-g/kg biochar (B20−CEM); (4) 30-g/kg biochar (B30−CEM), (5) CEM without biochar (CK + CEM); (6) 10-g/kg biochar with CEM (B10 + CEM), (7) 20-g/kg biochar with CEM (B20 + CEM), (8) 30-g/kg biochar with CEM (B30 + CEM). The utilization of biochar promoted seed germination, height, and tissue nutrient contents of alfalfa, and the combined biochar with CEM showed greater effects. Alfalfa biomass showed the maximum value in the B20 + CEM treatment, and the biomass of root, shoot, leaf in the B20 + CEM treatment increased by 200, 117.3, 144.6%, respectively, relative to the CK−CEM treatment. Alfalfa yield in the CK + CEM, B10 + CEM, B20 + CEM, B30 + CEM treatments was 71.91, 84.11, 138.5, and 120.5% higher than those in the CK−CEM treatment. The use of biochar and CEM decreased soil salinity and elevated soil nutrient content effectively. Biochar elevated soil organic carbon (SOC) and microbial biomass carbon (MBC), NH4+, NO3–, and enzymatic activities, and the positive impacts of biochar combined with CEM were additive. The combined addition of 20-g/kg biochar with CEM showed the pronounced improvement effects on improving soil fertility and nutrient availability as well as soil enzyme activities. Path analysis indicated that the application of biochar mixture with CEM promoted alfalfa biomass by regulating plant nutrient uptake, soil quality (soil nitrogen, SOC, MBC, NH4+, NO3–), and soil enzymatic activities (sucrase, urease, and alkaline phosphatases). Thus, incorporation of suitable biochar and CEM can serve as an effective measure to promote alfalfa productivity and restore coastal wetlands soils.
Collapse
|
4
|
Mrozik W, Minofar B, Thongsamer T, Wiriyaphong N, Khawkomol S, Plaimart J, Vakros J, Karapanagioti H, Vinitnantharat S, Werner D. Valorisation of agricultural waste derived biochars in aquaculture to remove organic micropollutants from water - experimental study and molecular dynamics simulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113717. [PMID: 34547568 PMCID: PMC8542888 DOI: 10.1016/j.jenvman.2021.113717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, we evaluated the valorisation of agricultural waste materials by transforming coconut husks and shells, corncobs and rice straw into biochar for water treatment in aquaculture. We compared the biochars' suitability for removal of organic micropollutants (acetaminophen, oxytetracycline, tetracycline, enrofloxacin, atrazine, diuron and diclofenac) from surface water needed for aquaculture. The biochars were prepared by three methods ranging from inexpensive drum kilns (200 °C) to pyrolysis with biogasfication (350-750 °C). Overall, antibiotics tetracycline and enrofloxacin were the most strongly sorbed micropollutants, and coconut husk biochar prepared at 750 °C was the best sorbent material. Molecular Dynamics simulations indicated that the major sorption mechanism is via π-π stacking interactions and there is a possibility of multilayer sorption for some of the micropollutants. We observed, a strong impact of ionic strength (salinity), which is an important consideration in coastal aquaculture applications. High salinity decreased the sorption for antibiotics oxytetracycline, tetracycline and enrofloxacin but increased diclofenac, atrazine and diuron sorption. We considered coconut husk biochar produced in drum kilns the most practical option for biochar applications in small-scale coastal aquacultures in South Asia. Pilot trials of canal water filtration at an aquaculture farm revealed that micropollutant sorption by coconut husk biochar under real-world conditions might be 10-500 times less than observed in the laboratory studies. Even so, biochar amendment of sand enhanced the micropollutant retention, which may facilitate subsequent biodegradation and improve the quality of brackish surface water used for food production in coastal aquaculture.
Collapse
Affiliation(s)
- Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Babak Minofar
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333, Nové Hrady, Czech Republic.
| | - Thunchanok Thongsamer
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - Nathacha Wiriyaphong
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - Sasiwimol Khawkomol
- Energy and Environmental Engineering Center, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Jidapa Plaimart
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - John Vakros
- Department of Chemistry, University of Patras, Patras, 26504, Greece
| | | | - Soydoa Vinitnantharat
- Environmental Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha-uthit road, Bangmod, Bangkok, 10140, Thailand
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
5
|
Folentarska A, Łagiewka J, Krystyjan M, Ciesielski W. Biodegradable Binary and Ternary Complexes from Renewable Raw Materials. Polymers (Basel) 2021; 13:polym13172925. [PMID: 34502965 PMCID: PMC8433750 DOI: 10.3390/polym13172925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this paper is to investigate the interactions between polysaccharides with different electrical charges (anionic and neutral starches) and proteins and fats in food ingredients. Another objective is to understand the mechanisms of these systems and the interdependence between their properties and intermolecular interactions. At present, there are not many studies on ternary blends composed of natural food polymers: polysaccharides of different electrical charge (anionic and neutral starches), proteins and lipids. Additionally, there are no reports concerning what type of interactions between polysaccharide, proteins and lipids exist simultaneously when the components are mixed in different orders. This paper intends to fill this gap. It also presents the application of natural biopolymers in the food and non-food industries.
Collapse
Affiliation(s)
- Agnieszka Folentarska
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Jakub Łagiewka
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland;
| | - Wojciech Ciesielski
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
- Correspondence: or
| |
Collapse
|