1
|
Płońska P, Saniewska D, Łęczyński L, Bełdowska M. Factors controlling methylmercury concentration in soils of Northern Poland. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135664. [PMID: 39226684 DOI: 10.1016/j.jhazmat.2024.135664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/26/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Soil acts as storage for many toxic substances, including mercury and its compounds. However, in addition to its storage function, soil can also be a source of many substances to the aquatic environment. Methylmercury (MeHg) is one of the most toxic form of mercury (Hg) present in the environment. Some studies consider Poland to be one of the major emitters of Hg into both the atmosphere and the Baltic Sea. The purpose of the study was to identify factors affecting the formation and retention of MeHg in the soil as well as it remobilization to the river. Fifteen soil core samples with a length of 200 cm were collected during the fall/winter of 2021-2022. The factors responsible for the inflow and formation of MeHg were precipitation, distance from the riverbank, soil moisture and age of organic matter. MeHg can be transported to topsoil with precipitation. An increase in MeHg concentration was also observed in moist soils located in the vicinity of riverbank. MeHg concentration was lower in soils with degraded organic matter than with fresh organic matter.
Collapse
Affiliation(s)
- Patrycja Płońska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Poland
| | - Dominika Saniewska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Poland.
| | - Leszek Łęczyński
- Department of Geophysics, Faculty of Oceanography and Geography, University of Gdańsk, Poland
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Poland
| |
Collapse
|
2
|
de Freitas F, Solera K, Lopes VJS, Córdova MO, Cavalheiro L, Moreno MIC, Battirola LD, de Andrade RLT. Native accumulator plants with a differential mercury phytoremediation potential in a region in Southern Amazon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63120-63135. [PMID: 39472373 DOI: 10.1007/s11356-024-35407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Mercury (Hg) is a non-essential trace metal, toxic to living beings and complex to quantify and mitigate in the environment. In this study, 25 plant species native to an Amazon-Cerrado transition area were tested for use in Hg remediation. Species identification, Hg quantification in plant biomass and soil at each sampling point, and evaluation of Hg compartmentalization in each plant were carried out. The results were subjected to statistical tests and evaluated using translocation coefficients (FT), bioconcentration (FBC), and bioaccumulation (FB). The results demonstrated that the distribution and accumulation of Hg differed between species and between the parts of the plant evaluated. Soil was the predominant source of Hg in the study area. The study highlighted seven species with Hg phytoremediation potential. Five translocator species were characterized, among these a preferentially bioaccumulating and bioconcentrating species, in addition to a bioconcentrating species and a preferentially bioconcentrating and bioaccumulating species of Hg. Potentially accumulating species stood out, Blechnum serrulatum Rich. (Blechnaceae), Mauritia flexuosa L.f. (Arecaceae), and Montrichardia arborescens (L.) Schott (Araceae), all widely distributed in tropical regions, characterized as rooted, terrestrial, or amphibious and associated with ruderal environments.
Collapse
Affiliation(s)
- Franciele de Freitas
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil.
| | - Kleber Solera
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Vinícius José Santos Lopes
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
- Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Milton Omar Córdova
- Postgraduate Program in Environmental Sciences, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, CEP 78557-267, Brazil
| | - Larissa Cavalheiro
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Maria Inês Cruzeiro Moreno
- Department of Biological Science, Institute of Biotechnology, Federal University of Catalão, Campus I, Av. Dr. Lamartine Pinto de Avelar, 1120 Setor Universitário, Catalão, Goiás, CEP 75704-020, Brazil
| | - Leandro Dênis Battirola
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| |
Collapse
|
3
|
Urango-Cárdenas I, Enamorado-Montes G, Burgos-Nuñez S, Marrugo-Madrid S, Paternina-Uribe R, Marrugo-Negrete J, Díez S. Unravelling arsenic bioavailability in floodplain soils impacted by mining activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174193. [PMID: 38914335 DOI: 10.1016/j.scitotenv.2024.174193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Gold mining not only introduces mercury (Hg) contamination to soils but also facilitates the mobilization of other toxic substances, including arsenic (As). This study assessed the total content, chemical species, and bioavailable fraction of As in surface soils impacted by mining residues during frequent flooding. Analysis of 207 soil samples across the floodplain region of La Mojana, Colombia, screened to 2 mm with polyethylene mesh, revealed significant correlations (p < 0.05) between inorganic As, the residual phase, sulphur (S), iron (Fe), manganese (Mn), and aluminum (Al), indicating associations with sulfides and oxyhydroxides of Fe and Mn. The origin of toxicity was linked to suspended materials transported by rivers during flooding in areas with intense mining activity. Sites with better oxidizing conditions exhibited a higher presence of phases associated with amorphous and crystalline oxides in non-flooded areas. Although the bioavailable fraction was minimal in flooded sites, reducing conditions facilitated As mobility, resulting in higher concentrations in deeper soil layers, particularly as As(III). The contamination factor (CF) ranged from 1.3 to 11.1, and the geochemical index (Igeo) ranged from -0.2 to 2.9, indicating a moderate to high As contamination level in soils. This poses potential health risks, considering the agricultural use of these soils.
Collapse
Affiliation(s)
- Iván Urango-Cárdenas
- Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia
| | | | - Saudith Burgos-Nuñez
- Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia
| | - Siday Marrugo-Madrid
- Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia
| | | | - José Marrugo-Negrete
- Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
4
|
Xu R, Lai S, Zhang Y, Zhang X. Research Progress of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:832. [PMID: 38786788 PMCID: PMC11124338 DOI: 10.3390/nano14100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we discussed the hazards of heavy-metal-containing quantum dots (QDs), such as environmental pollution and human health risks. Next, the main representatives of heavy-metal-free QDs were introduced, such as InP, ZnE (E=S, Se and Te), CuInS2, Ag2S, and so on. In the next section, we discussed the synthesis methods of heavy-metal-free QDs, including the hot injection (HI) method, the heat up (HU) method, the cation exchange (CE) method, the successful ionic layer adsorption and reaction (SILAR) method, and so on. Finally, important progress in the development of heavy-metal-free QLEDs was summarized in three aspects (QD emitter layer, hole transport layer, and electron transport layer).
Collapse
Affiliation(s)
| | | | | | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Physics and Opto-Electronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (R.X.); (S.L.); (Y.Z.)
| |
Collapse
|
5
|
Galarza E, Moulatlet GM, Rico A, Cabrera M, Pinos-Velez V, Pérez-González A, Capparelli MV. Human health risk assessment of metals and metalloids in mining areas of the Northeast Andean foothills of the Ecuadorian Amazon. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:706-716. [PMID: 36239162 DOI: 10.1002/ieam.4698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Gold mining (GM) is a major source of metals and metalloids in rivers, causing severe environmental pollution and increasing the exposure risks to the residents of surrounding areas. Mining in Ecuadorian Amazonia has dramatically increased in recent years, but its impacts on Indigenous local populations that make use of rivers are still unknown. The aim of this study was to assess the risks to adults and children caused by the exposure to metals and metalloids in freshwater ecosystems contaminated with tailings released by GM activities in 11 sites of the upper Napo River basin, Ecuador. We selected a carcinogenic and a noncarcinogenic risk assessment method to estimate the hazard index (HI) and total cancer risk (TCR). The concentration of Ag, Al, As, Cd, Cu, Fe, Mn, Pb, Zn, B, and V in water and sediment samples was considered to assess the risks to human health. The calculated HI was 23-352 times greater than the acceptable limits in all sites for both children and adults. Mn and Fe were the main contributors (75% in water and 99% in sediment) to the total calculated risk based on the HI. The calculated TCR for children and adults exceeded approximately one to three times the permissible threshold in all sites. As and Pb contributed up to 93% of the total calculated risk based on TCR for both children and adults. This study demonstrates that the emission and mobilization of metals and metalloids caused by mining activities increase the risk to human health, to which we recommend further monitoring of freshwater contamination in the area and the implementation of preventive health management measures. Integr Environ Assess Manag 2023;19:706-716. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Emily Galarza
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C. INECOL, Xalapa, Veracruz, México
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Spain
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
| | - Marcela Cabrera
- Laboratorio Nacional de Referencia Del Agua, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Veronica Pinos-Velez
- Departamento de Recursos Hídricos y Ciencias Ambientales, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador
- Departamento de Biociencias, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador
| | - Andrés Pérez-González
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología-Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, México
| |
Collapse
|
6
|
Oliveira ECMD, Pires LP, Santos VSV, Caixeta ES, Bravo JVM, Pereira BB. Phytoremediation, bioaccessibility and ecotoxicological risk assessment of arsenic in a gold mining area. CHEMOSPHERE 2023; 319:138030. [PMID: 36736479 DOI: 10.1016/j.chemosphere.2023.138030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The physicochemical and biological parameters of aquatic ecosystems are directly affected by mining activities, increasing the ecotoxicological risk related to exposure to contaminants and pollutants. In this study, a native and adapted floating aquatic macrophyte was used in a gold mining area as a model organism to assess the environmental risk and its potential application in bioremediation of heavy metals. The physicochemical parameters of water and sediments were evaluated, as well as the phytoremediation parameters (bioconcentration and translocation factors) of Hydrocotyle ranunculoides L. The results showed a significant bioconcentration of Cr, Pb, Cu, and Zn in the roots of the macrophyte (high BCF: As > Cu > Zn > Pb > Cr), confirming its suitability for use in rhizofiltration. Regarding arsenic bioconcentration, H. ranunculoides demonstrated a high BCF and TF > 1, indicating its phytoextraction potential, an essential requirement for plants to be used in bioremediation programs.
Collapse
Affiliation(s)
- Elida Cristina Monteiro de Oliveira
- Federal University of Uberlândia, Institute of Biotechnology, Department of Genetics and Biochemistry, Campus Umuarama, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil.
| | - Luís Paulo Pires
- Federal University of Uberlândia, Institute of Biology, Campus Umuarama, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil.
| | - Vanessa Santana Vieira Santos
- Federal University of Uberlândia, Institute of Biotechnology, Department of Genetics and Biochemistry, Campus Umuarama, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil.
| | - Evelyn Siqueira Caixeta
- Federal University of Uberlândia, Institute of Biotechnology, Department of Genetics and Biochemistry, Campus Umuarama, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil.
| | - João Vitor M Bravo
- Federal University of Uberlândia, Institute of Geography, Department of Environmental Health, Campus Santa Monica, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil.
| | - Boscolli Barbosa Pereira
- Federal University of Uberlândia, Institute of Biotechnology, Department of Genetics and Biochemistry, Campus Umuarama, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil; Federal University of Uberlândia, Institute of Geography, Department of Environmental Health, Campus Santa Monica, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
8
|
Erasmus JH, Zimmermann S, Smit NJ, Malherbe W, Nachev M, Sures B, Wepener V. Human health risks associated with consumption of fish contaminated with trace elements from intensive mining activities in a peri-urban region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154011. [PMID: 35192810 DOI: 10.1016/j.scitotenv.2022.154011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Worldwide, numerous rural communities and low-income groups depend on fish harvested by subsistence fishers from local rivers and its impoundments as a source of protein. The aim of the present study was to determine the trace element bioaccumulation (As, Cd, Cr, Cu, Ni, Pb, Pt, Zn) in three edible fish species (Cyprinus carpio, Clarias gariepinus, Oreochromis mossambicus) from two impoundments in the Hex River system, South Africa, as well as the chronic health risk these trace elements pose to regular fish consumers. Trace element concentrations in the Hex River are naturally high (geogenic source), however, increased anthropogenic activities, such as intensive platinum mining activities, elevate the already high background concentrations. Concentrations of As, Cr, and Pt in C. carpio and C. gariepinus, as well as Ni and Zn in O. mossambicus were significantly higher in the impacted impoundment as compared to the reference impoundment. Concentrations of Cr and Cu were at both sampling sites the highest in O. mossambicus. From the human health risk assessment, As poses non-carcinogenic (HQ = 2-7) and carcinogenic risks (33-93 out of 10,000 people), while Cr (3-10 out of 10,000 people) and Ni (2-6 out of 10,000 people) pose only carcinogenic risks for the regular consumption of all three fish species from both impoundments, indicating a high probability of adverse human health effects. For As, Cr and Ni, also the sediment concentrations exceeded the levels of concern within the consensus based sediment quality guideline (CBSQG), while Cd, Cu, Ni and Zn exceeded the water quality guideline values. Thus, the CBSQG approach could be a promising tool for predicting human health risk associated with fish consumption. Since the present study only focused on the individual trace element risks, mixed toxicity of these trace elements and possible other pollutants within these fish species may pose an even greater risk to people who consume these fish regularly.
Collapse
Affiliation(s)
- J H Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - S Zimmermann
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa; Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany.
| | - N J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - W Malherbe
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - M Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany.
| | - B Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany.
| | - V Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| |
Collapse
|
9
|
Li Y, Chen L, Liang S, Zhou H, Liu YR, Zhong H, Yang Z. Looping Mercury Cycle in Global Environmental-Economic System Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2861-2879. [PMID: 35129955 DOI: 10.1021/acs.est.1c03936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Minamata Convention on Mercury calls for Hg control actions to protect the environment and human beings from the adverse impacts of Hg pollution. It aims at the entire life cycle of Hg. Existing studies on the Hg cycle in the global environmental-economic system have characterized the emission-to-impact pathway of Hg pollution. That is, Hg emissions/releases from the economic system can have adverse impacts on human health and ecosystems. However, current modeling of the Hg cycle is not fully looped. It ignores the feedback of Hg-related environmental impacts (including human health impacts and ecosystem impacts) to the economic system. This would impede the development of more comprehensive Hg control actions. By synthesizing recent information on Hg cycle modeling, this critical review found that Hg-related environmental impacts would have feedbacks to the economic system via the labor force and biodiversity loss. However, the interactions between Hg-related activities in the environmental and economic systems are not completely clear. The cascading effects of Hg-related environmental impacts to the economic system throughout global supply chains have not been revealed. Here, we emphasize the knowledge gaps and propose possible approaches for looping the Hg cycle in global environmental-economic system modeling. This progress is crucial for formulating more dynamic and flexible Hg control measures. It provides new perspectives for the implementation of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Yumeng Li
- School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Haifeng Zhou
- School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Durante-Yánez EV, Martínez-Macea MA, Enamorado-Montes G, Combatt Caballero E, Marrugo-Negrete J. Phytoremediation of Soils Contaminated with Heavy Metals from Gold Mining Activities Using Clidemia sericea D. Don. PLANTS (BASEL, SWITZERLAND) 2022; 11:597. [PMID: 35270068 PMCID: PMC8912359 DOI: 10.3390/plants11050597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Soils contaminated by potentially toxic elements (PTEs) as a result of anthropogenic activities such as mining are a problem due to the adverse effects on human and environmental health, making it necessary to seek sustainable strategies to remediate contaminated areas. The objective of this study was to evaluate the species Clidemia sericea D. Don for the phytoremediation of soils contaminated with PTEs (Hg, Pb, and Cd) from gold mining activities. The study was conducted for three months, with soils from a gold mining area in northern Colombia, and seeds of C. sericea, under a completely randomized experimental design with one factor (concentration of PTEs in soil) and four levels (control (T0), low (T1), medium (T2), and high (T3)), each treatment in triplicate, for a total of twelve experimental units. Phytotoxic effects on plants, bioconcentration (BCF), and translocation (TF) factors were determined. The results obtained for the tissues differed in order of metal accumulation, with the root showing the highest concentration of metals. The highest values of bioconcentration (BCF > 1) were presented for Hg at T3 and Cd in the four treatments; and of translocation (TF > 1) for Hg and Pb at T0 and T1; however, for Pb, the TF indicates that it is transferable, but it is not considered for phytoextraction. Thus, C. sericea demonstrated its potential as a phytostabilizer of Hg and Cd in mining soils, strengthening as a wild species with results of resistance to the stress of the PTEs evaluated, presenting similar behavior and little phytotoxic affectation on the growth and development of each of the plants in the different treatments.
Collapse
Affiliation(s)
- Elvia Valeria Durante-Yánez
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - María Alejandra Martínez-Macea
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - Germán Enamorado-Montes
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - Enrique Combatt Caballero
- Department of Agricultural Engineering and Rural Development, Faculty of Agricultural Sciences, University of Córdoba, Montería 230002, Colombia;
| | - José Marrugo-Negrete
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| |
Collapse
|
11
|
Enamorado-Montes G, Reino-Causil B, Urango-Cardenas I, Marrugo-Madrid S, Marrugo-Negrete J. Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. TOXICS 2021; 9:304. [PMID: 34822695 PMCID: PMC8624091 DOI: 10.3390/toxics9110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The Hg accumulation in different commercial varieties of Oryzasativa L. was evaluated in the region of La Mojana, Colombia, where rice cultivation has become the staple food of the population living in this area. The varieties studied were Fedearroz-473 (FA473), Fedearroz-2000 (FA2000), and Fedearroz-Mocari (FAM). Soil spiked at different Hg levels was evaluated, (130, 800, and 1500 µg kg-1) using a 32 factorial design that consisted of 3 (rice varieties) × 3 (Hg contents). The biomass, 1000-grain weight, and the accumulation of Hg in the roots, grains, and husks were determined. The highest biomass was found in the FA473 (308.76 ± 108.26 g), and the lowest was found in FAM (144.04 ± 26.45 g) in the 1500 µg kg-1 Hg soil in both cases. The weight per 1000-grains decreased significantly in the soil containing 800 µg of Hg kg-1. Hg accumulation in the organs of the evaluated varieties was higher in the roots, followed by in the husks and grains. The Hg in the rice grains of the evaluated varieties presented levels close to the permissible limit of the Chinese standard (20 μg Hg kg-1) in the evaluated soils and were only exceeded by FA473. Although in natural soil concentrations, the non-cancer health risk (HQ) from rice consumption was lower for FA473 and FAM; Hg enrichment in the soil of La Mojana region may endanger the health of future populations due to their high consumption of rice.
Collapse
Affiliation(s)
| | | | | | | | - José Marrugo-Negrete
- Departamento de Química, Laboratorio de Toxicología y gestión ambiental, Facultad de Ciencias Básicas, Universidad de Córdoba, Carrera 6 No. 77-305, Montería 230002, Córdoba, Colombia; (G.E.-M.); (B.R.-C.); (I.U.-C.); (S.M.-M.)
| |
Collapse
|
12
|
Tiodar ED, Văcar CL, Podar D. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2435. [PMID: 33801363 PMCID: PMC7967564 DOI: 10.3390/ijerph18052435] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023]
Abstract
Mercury (Hg) pollution is a global threat to human and environmental health because of its toxicity, mobility and long-term persistence. Although costly engineering-based technologies can be used to treat heavily Hg-contaminated areas, they are not suitable for decontaminating agricultural or extensively-polluted soils. Emerging phyto- and bioremediation strategies for decontaminating Hg-polluted soils generally involve low investment, simple operation, and in situ application, and they are less destructive for the ecosystem. Current understanding of the uptake, translocation and sequestration of Hg in plants is reviewed to highlight new avenues for exploration in phytoremediation research, and different phytoremediation strategies (phytostabilization, phytoextraction and phytovolatilization) are discussed. Research aimed at identifying suitable plant species and associated-microorganisms for use in phytoremediation of Hg-contaminated soils is also surveyed. Investigation into the potential use of transgenic plants in Hg-phytoremediation is described. Recent research on exploiting the beneficial interactions between plants and microorganisms (bacteria and fungi) that are Hg-resistant and secrete plant growth promoting compounds is reviewed. We highlight areas where more research is required into the effective use of phytoremediation on Hg-contaminated sites, and conclude that the approaches it offers provide considerable potential for the future.
Collapse
Affiliation(s)
- Emanuela D. Tiodar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Cristina L. Văcar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| |
Collapse
|