1
|
Mao W, Qu J, Liu H, Guo R, Liao K, Wu S, Hangbiao J, Hu Z. Associations between urinary concentrations of benzothiazole, benzotriazole, and their derivatives and lung cancer: A nested case-control study. ENVIRONMENTAL RESEARCH 2024; 251:118750. [PMID: 38522739 DOI: 10.1016/j.envres.2024.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Benzothiazole (BTH), benzotriazole (BTR), and their respective derivatives (BTHs and BTRs) are emerging environmental pollutants with widespread human exposure and oncogenic potential. Studies have demonstrated adverse effects of exposure to certain BTHs and BTRs on the respiratory system. However, no study has examined the associations between exposure to BTHs and BTRs and lung cancer risk. We aimed to examine the associations between urinary concentrations of BTHs and BTRs and the risk of lung cancer in the general population from Quzhou, China. We conducted a nested case-control study in an ongoing prospective Quzhou Environmental Exposure and Human Health (QEEHH) cohort, involving 20, 694 participants who provided urine samples during April 2019-July 2020. With monthly follow-up until November 2022, 212 lung cancer cases were recruited and 1:1 matched with healthy controls based on age and sex. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer risk associated with urinary BTHs and BTRs concentrations using conditional logistic regression models after controlling for potential covariates. We also examined effect modification by several covariates, including sex, socioeconomic status, smoking status, alcohol consumption, and dietary habit. Creatinine-corrected urinary BTH and 2-hydroxy-benzothiazole (2-OH-BTH) levels were significantly associated with the risk of lung cancer, after adjusting for a variety of covariates. Participants in the highest quartile of BTH had a 95% higher risk of lung cancer, compared with those in the lowest quartile (adjusted OR = 1.95, 95% CI: 1.08-3.49; p for trend = 0.01). Participants with higher levels of urinary 2-OH-BTH had an 83% higher risk of lung cancer than those with lower levels (adjusted OR = 1.83, 95% CI: 1.16-2.88; p for trend = 0.01). Exposure to elevated levels of BTH and 2-OH-BTH may be associated with an increased risk of lung cancer. These associations were not modified by socio-demographic characteristics.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Jin Hangbiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
2
|
Charkiewicz AE, Omeljaniuk WJ, Nikliński J. Bisphenol A-What Do We Know? A Global or Local Approach at the Public Health Risk Level. Int J Mol Sci 2024; 25:6229. [PMID: 38892416 PMCID: PMC11172700 DOI: 10.3390/ijms25116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
BPA has demonstrated enormous multisystem and multi-organ toxicity shown mainly in animal models. Meanwhile, the effects of its exposure in humans still require years of observation, research, and answers to many questions. Even minimal and short-term exposure contributes to disorders or various types of dysfunction. It is released directly or indirectly into the environment at every stage of the product life cycle, demonstrating its ease of penetration into the body. The ubiquity and general prevalence of BPA influenced the main objective of the study, which was to assess the toxicity and health effects of BPA and its derivatives based on the available literature. In addition, the guidelines of various international institutions or regions of the world in terms of its reduction in individual products were checked. Bisphenol A is the most widely known chemical and perhaps even the most studied by virtually all international or national organizations, but nonetheless, it is still controversial. In general, the level of BPA biomonitoring is still too high and poses a potential threat to public health. It is beginning to be widely argued that future toxicity studies should focus on molecular biology and the assessment of human exposure to BPA, as well as its substitutes. The effects of its exposure still require years of observation, extensive research, and answers to many questions. It is necessary to continue to deepen the knowledge and interest of many organizations, companies, and consumers around the world in order to make rational purchases as well as future choices, not only consumer ones.
Collapse
Affiliation(s)
| | - Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
4
|
Aysin F. Bisphenol A promotes cell death in healthy respiratory system cells through inhibition of cell proliferation and induction of G2/M cell cycle arrest. ENVIRONMENTAL TOXICOLOGY 2024; 39:3264-3273. [PMID: 38459623 DOI: 10.1002/tox.24203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Bisphenol A (BPA) is a substance that can harm the environment and human health by interfering with the normal functioning of the body's hormonal system. It is commonly found in various plastic-based products such as cosmetics, canned foods, beverage containers, and medical equipment and as well as it can also be absorbed by inhalation. There have been limited studies on the effects of BPA on lung fibroblasts, and it is still unclear how high levels of BPA can impact respiratory system cells, particularly the lungs and trachea. In this research, we aimed to investigate the cell cycle disruption potential of BPA on respiratory system cells by examining healthy trachea and lung cells together for the first time. The findings indicated that BPA exposure can alter the healthy cells' morphology, leading to reduced cellular viability that has been assessed by MTT and SRB assays. BPA treatment was able to activate caspase3 as expected, which could cause apoptosis in treated cells. Although the highest dose of BPA did not increase the apoptotic rate of rat trachea cells, it remarkably caused them to become necrotic (52.12%). In addition to quantifying the induction of apoptosis and necrosis by BPA, cell cycle profiles were also determined using flow cytometry. Thereby, BPA treatment unexpectedly inhibited the cell cycle's progression by causing G2/M cell cycle arrest in both lung and tracheal cells, which hindered cell proliferation. The findings of the study suggested that exposure to BPA could lead to serious respiratory problems, even respiratory tract cancers via alterations in the cell cycle.
Collapse
Affiliation(s)
- Ferhunde Aysin
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Zeng P, Wang F, Zhang J, Ur Rashid H, Li X, Zhang P, Luo Y, Wu X. Integrating network pharmacology and experimental verification to investigate the pharmacological mechanisms of Buzhong Yiqi decoction in the treatment of non-small cell lung cancer. Chem Biol Drug Des 2024; 103:e14414. [PMID: 38230796 DOI: 10.1111/cbdd.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Among all types of cancers, non-small cell lung cancer (NSCLC) exhibits the highest mortality rate with a five-year survival rate below 17% for patients. The Buzhong Yiqi decoction (BZYQD), traditional Chinese medicine (TCM) formula, has been reported to exhibit clinical efficacy in the treatment of NSCLC. Nevertheless, the underlying molecular mechanism remains elusive. This study aimed to assess the mechanistic actions exerted by BZYQD against NSCLC using network pharmacological analysis and experimental validation. The public databases were searched for active compounds in BZYQD, their potential targets, and NSCLC-related targets. The protein-protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the core targets and signaling pathways of BZYQD against NSCLC. After screening, this study validated the results of predictions through in vitro experiments and public databases. We found 192 common targets between BZYQD and NSCLC. KEGG analysis showed that the anti-NSCLC effects of BZYQD were mediated through the PI3K-AKT signaling pathway. The results of in vitro experiment indicated that BZYQD could inhibit cell viability and proliferation of A549 and H1299 cells apart from inducing cell apoptosis. In addition, western blot results substantiated that BZYQD could treat NSCLC by inhibiting the activation of the PI3K-AKT signaling pathway. The current study investigated the pharmacological mechanism of BZYQD against NSCLC via network pharmacology and in vitro analyses. Overall, the results revealed that BZYQD could be a promising therapeutic agent for the treatment of NSCLC in the future. Still, more experimental investigations are needed to confirm the applicability of BZYQD for clinical trials.
Collapse
Affiliation(s)
- Panke Zeng
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Feng Wang
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jianing Zhang
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haroon Ur Rashid
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Xin Li
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Pengfei Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunru Luo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Prueitt RL, Hixon ML, Fan T, Olgun NS, Piatos P, Zhou J, Goodman JE. Systematic review of the potential carcinogenicity of bisphenol A in humans. Regul Toxicol Pharmacol 2023:105414. [PMID: 37263405 DOI: 10.1016/j.yrtph.2023.105414] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical to which humans are exposed through a variety of environmental sources. We have conducted a comprehensive, systematic review of 29 epidemiology studies and 27 experimental animal studies, published through May 2022, evaluating the potential carcinogenicity of BPA to contribute to the understanding of whether BPA is carcinogenic in humans. We conducted this review according to best practices for systematic reviews and incorporating established frameworks for study quality evaluation and evidence integration. The epidemiology studies have many limitations that increase the risk of biased results, but overall, the studies do not provide clear and consistent evidence for an association between BPA exposure and the development of any type of cancer. The experimental animal studies also do not provide strong and consistent evidence that BPA is associated with the induction of any malignant tumor type. Some of the proposed mechanisms for BPA carcinogenicity are biologically plausible, but the relevance to human exposures is not clear. We conclude that there is inadequate evidence to support a causal relationship between BPA exposure and human carcinogenicity, based on inadequate evidence in humans, as well as evidence from experimental animal studies that suggests a causal relationship is not likely.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Mary L Hixon
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Nicole S Olgun
- Gradient, 103 East Water Street, 3rd Floor, Charlottesville, VA, 22902, USA
| | - Perry Piatos
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | | |
Collapse
|
7
|
Mao W, Qu J, Zhong S, Wu X, Mao K, Liao K, Jin H. Associations between urinary parabens and lung cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66186-66194. [PMID: 37097579 DOI: 10.1007/s11356-023-26953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Parabens are a family of endocrine-disrupting chemicals. Environmental estrogens may play a vital role in the development of lung cancer. To date, the association between parabens and lung cancer is unknown. Based on the 189 cases and 198 controls recruited between 2018 and 2021 in Quzhou, China, we measured 5 urinary parabens concentrations and examined the association between urinary concentrations of parabens and lung cancer risk. Cases showed significantly higher median concentrations of methyl-paraben (MeP) (2.1 versus 1.8 ng/mL), ethyl-paraben (0.98 versus 0.66 ng/mL), propyl-paraben (PrP) (2.2 versus 1.4 ng/mL), and butyl-paraben (0.33 versus 0.16 ng/mL) than controls. The detection rates of benzyl-paraben were only 8 and 6% in the control and case groups, respectively. Therefore, the compound was not considered in the further analysis. The significant correlation between urinary concentrations of PrP and the risk of lung cancer (odds ratio (OR)adjusted = 2.22, 95% confidence interval (CI): 1.76, 2.75; Ptrend < 0.001) was identified in the adjusted model. In the stratification analysis, we found that urinary concentrations of MeP were significantly associated with lung cancer risk (OR = 1.16, 95% CI: 1.01, 1.27 for the highest quartile group). Besides, comparing the second, third, and fourth quartile groups with the lowest group of PrP, we also observed urinary PrP concentrations associated with lung cancer risk, with the adjusted OR of 1.52 (95% CI: 1.29, 1.65, Ptrend = 0.007), 1.39 (95% CI: 1.15, 1.60, Ptrend = 0.010), and 1.85 (95% CI: 1.53, 2.30, Ptrend = 0.001), respectively. MeP and PrP exposure, reflected in urinary concentrations of parabens, may be positively associated with the risk of lung cancer in adults.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Songyang Zhong
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Xilin Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| |
Collapse
|
8
|
Xiao M, Zhang Y, Zhang X, Zhang G, Jin C, Yang J, Wu S, Lu X. Bisphenol A and Di(2-Ethylhexyl) Phthalate promote pulmonary carcinoma in female rats via estrogen receptor beta: In vivo and in silico analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114496. [PMID: 36608567 DOI: 10.1016/j.ecoenv.2022.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of lung cancer in women currently merits our attentions. However, cigarette exposure alone does not tell the whole story that lung cancer is more prevalent among non-smoking women. Since female lung cancer is closely linked to estrogen levels, many of endocrine disrupting chemicals (EDCs), as the substances similar to estrogen, affect hormone levels and become a potential risk of female lung cancer. Additionally, the combined toxicity of EDCs in daily environment has only been discussed on a limited scale. Consequently, this study explored the cancer-promoting effect of two representative substances of EDCs namely Bisphenol A (BPA) and Di(2-Ethylhexyl) Phthalate (DEHP) after their exposure alone or in combination, using a rat pulmonary tumor model published previously, combining bioinformatics analysis based on The Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA) databases. It demonstrated that BPA and DEHP enhanced the promotion of pulmonary tumor in female rats, either alone or in combination. Mechanistically, BPA and DEHP mainly directly bound and activated ESR2 protein, phosphorylated CREB protein, activated HDAC6 transcriptionally, induced the production of the proto-oncogene c-MYC, and accelerated the formation of pulmonary tumor in female rats. Remarkably, BPA, rather than DEHP, exhibited a much more critical effect in female lung cancer. Additionally, the transcription factor ESR2 was most affected in carcinogenesis, causing genetic disruption. Furthermore, the TCGA database revealed that ESR2 could enhance the promotion and progression of non-small cell lung cancer in females via activating the WNT/β-catenin pathway. Finally, our findings demonstrated that BPA and DEHP could enhance the promotion of pulmonary carcinoma via ESR2 in female rats and provide a potential and valuable insight into the causes and prevention of lung cancer in non-smoking women due to EDCs exposure.
Collapse
Affiliation(s)
- Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Yating Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xuan Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Cuihong Jin
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Jinghua Yang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
9
|
He H, He MM, Wang H, Qiu W, Liu L, Long L, Shen Q, Zhang S, Qin S, Lu Z, Cai Y, Zhang M, Niu S, Li J, Shen N, Zhu Y, Tian J, Chang J, Miao X, Zhong R. In Utero and Childhood/Adolescence Exposure to Tobacco Smoke, Genetic Risk, and Lung Cancer Incidence and Mortality in Adulthood. Am J Respir Crit Care Med 2023; 207:173-182. [PMID: 35943859 DOI: 10.1164/rccm.202112-2758oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: The individual effects of early-life tobacco smoke exposure and its interactions with genetic factors on lung cancer in adulthood remain unclear. Objectives: To investigate the associations of early-life tobacco exposures as well as their interactions with polygenic risk scores (PRSs) with lung cancer incidence and mortality. Methods: A total of 432,831 participants from the UK Biobank study were included. We estimated the associations of in utero exposure to tobacco smoke, the age of smoking initiation and their interactions with PRSs with lung cancer incidence and mortality in adulthood using Cox proportional hazard models. Measurements and Main Results: Lung cancer incidence (hazard ratio [HR]: 1.59, 95% confidence interval [CI], 1.44-1.76) increased among participants with in utero tobacco exposure. Multivariable-adjusted HRs (with 95% CIs) of lung cancer incidence for smoking initiation in adulthood, adolescence, and childhood (versus never-smokers) were 6.10 (5.25-7.09), 9.56 (8.31-11.00), and 15.15 (12.90-17.79) (Ptrend < 0.001). Similar findings were observed in lung cancer mortality. Participants with high PRSs and in utero tobacco exposure (versus low PRSs participants without in utero exposure) had an HR of 2.35 for lung cancer incidence (95% CI, 1.97-2.80, Pinteraction = 0.089) and 2.43 for mortality (95% CI, 2.05-2.88, Pinteraction = 0.032). High PRSs with smoking initiation in childhood (versus never-smokers with low PRSs) had HRs of 18.71 for incidence (95% CI, 14.21-24.63, Pinteraction = 0.004) and 19.74 for mortality (95% CI, 14.98-26.01, Pinteraction = 0.033). Conclusions: In utero and childhood/adolescence exposure to tobacco smoke and its interaction with genetic factors may substantially increase the risks of lung cancer incidence and mortality in adulthood.
Collapse
Affiliation(s)
- Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Ming-Ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Weihong Qiu
- Department of Occupational & Environmental Health, and
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine and
| | - Lu Long
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; and
| | - Qian Shen
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Shanshan Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Shifan Qin
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Zequn Lu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Yimin Cai
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Ming Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Jiaoyuan Li
- Department of Laboratory Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Jianbo Tian
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| | - Xiaoping Miao
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health
| |
Collapse
|
10
|
He H, Pan T, Shi X, Yang S, Jasbi P, Jin Y, Cui JY, Gu H. An integrative cellular metabolomic study reveals downregulated tricarboxylic acid cycle and potential biomarkers induced by tetrabromobisphenol A in human lung A549 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:7-16. [PMID: 36106841 DOI: 10.1002/tox.23657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is extensively utilized as a brominated flame retardant in numerous chemical products. As an environmental contaminant, the potential human toxicity of TBBPA has been attracting increasing attention. Nonetheless, the exact underlying mechanisms of toxicological effects caused by TBBPA remain uncertain. In this study, we investigated the potential mechanisms of TBBPA toxicity in vitro in the A549 cell line, one of the widely used type II pulmonary epithelial cell models in toxicology research. Cell viability was determined after treatment with varying concentrations of TBBPA. Liquid chromatography-mass spectrometry (LC-MS) metabolomics and metabolic flux approaches were utilized to evaluate metabolite and tricarboxylic acid (TCA) cycle oxidative flux changes. Our findings demonstrated that TBBPA significantly reduced the viability of cells and attenuated mitochondrial respiration in A549 cells. Additionally, LC-MS data showed significant reductions in TCA cycle metabolites including citrate, malate, fumarate, and alpha-ketoglutarate in 50 μM TBBPA-treated A549 cells. Metabolic flux analysis indicated reduced oxidative capacity in mitochondrial metabolism following TBBPA exposure. Moreover, diverse metabolic pathways, particularly alanine, aspartate, and glutamate metabolism and the TCA cycle, were found to be dysregulated. In total, 12 metabolites were significantly changed (p < .05) in response to 50 μM TBBPA exposure. Our results provide potential biomarkers of TBBPA toxicity in A549 cells and help elucidate the molecular mechanisms of pulmonary toxicity induced by TBBPA exposure.
Collapse
Affiliation(s)
- Hailang He
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
| | - Tingyu Pan
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
| | - Shuang Yang
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- School of Molecular Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| |
Collapse
|
11
|
Qu J, Mao W, Liao K, Zhang Y, Jin H. Association between urinary bisphenol analogue concentrations and lung cancer in adults: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120323. [PMID: 36191799 DOI: 10.1016/j.envpol.2022.120323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Elevated urinary bisphenol A (BPA) concentrations have been associated with lung cancer in humans. However, toxicological studies demonstrated that the proliferation of lung cancer cells was inhibited by BPA exposure. Therefore, it is still necessary to determine whether exposure to BPA and other bisphenol analogues (BPs) is associated with lung cancer in humans. In this study, 226 lung cancer patients and 243 controls were randomly recruited. Concentrations of three BPs in human urine were quantified and their relationships with the risk of human lung cancer were evaluated. BPA (mean 1.03 ng/mL, 0.87 μg/g Cre) was the predominant BP in human urine, followed by bisphenol S (BPS) (0.72 ng/mL, 0.53 μg/g Cre) and bisphenol F (0.32 ng/mL, 0.37 μg/g Cre). Significant correlations between creatinine-corrected urinary BPA concentrations and the lung cancer risk (odds ratio (OR) adjusted = 1.28, 95% confidence interval (CI): 1.17, 1.40; Ptrend = 0.04) were found using logistical regression analysis. Creatinine-corrected urinary concentrations of BPS in participants showed significant correlations with lung cancer (ORadjusted = 1.23, 95% CI: 1.04, 1.59; Ptrend = 0.01) in the adjusted model. In the stratification analysis, the significant correlation between urinary creatinine-corrected concentrations of BPA and the risk of lung cancer still observed in male participants (OR = 1.36, 95% CI: 1.09, 1.62, p = 0.040). This study demonstrates that elevated human exposure to BPA and BPS may be associated with the increased lung cancer risk.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
12
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
13
|
Hong X, Wang G, Liu X, Wu M, Zhang X, Hua X, Jiang P, Wang S, Tang S, Shi X, Huang Y, Shen T. Lipidomic biomarkers: Potential mediators of associations between urinary bisphenol A exposure and colorectal cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127863. [PMID: 34848068 DOI: 10.1016/j.jhazmat.2021.127863] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Previous research reported associations between bisphenol A (BPA) exposure and some malignant tumor incidences, yet the underlying mechanism remains largely uncertain. This investigation was aimed to explore the association of BPA exposure burden with colorectal cancer (CRC) and the role of tumor tissue lipid metabolism in the associations between BPA and CRC using lipidomic approach. Urinary BPA levels in CRC cases were significantly higher than those in controls (P value < 0.05). BPA was positively correlated with all three serum CRC biomarkers, with an estimated odds ratio (OR) of 4.45 (95% confidence interval (95% CI): [1.31, 15.14]) between the highest and lowest tertiles of exposure. Lipidomic screening of tumor samples suggested significant perturbation in the glycerophospholipid metabolism pathway, of which phosphatidylcholine (PC 34:0), phosphatidylcholine (PC 37:1), phosphatidylethanolamine (PE 34:2), triacylglycerol (TG 56:4) demonstrated mediation contribution of 21.9%, 18.7%, 18.4% and 27.39%, respectively, in the association between BPA exposure and CRC. Our work provides novel findings that cancer tissue metabolites may be playing vital mediating roles in the associations between BPA exposure burden and CRC risk. These findings contribute to better understanding of the etiology of CRC induced by environmental stressors.
Collapse
Affiliation(s)
- Xu Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xingcun Liu
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Ming Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xindong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Pengpeng Jiang
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
14
|
Zhong R, He H, Jin M, Lu Z, Deng Y, Liu C, Shen N, Li J, Wang H, Ying P, Li B, Zeng Q, Lu Q, Cheng L, Zhu Y, Miao X, Tian J. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150753. [PMID: 34619205 DOI: 10.1016/j.scitotenv.2021.150753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenols and triclosan (TCS) are common endocrine disrupters (EDCs) that may induce oxidative stress. However, there is limited information as to whether these EDCs interact with genetic variants to modify the levels of oxidative stress on a genome-wide scale. METHODS We first performed a genome-wide scan among a Chinese population and also measured three urinary EDCs, including bisphenol A (BPA), bisphenol F (BPF) and TCS, and three urinary oxidative stress markers [4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-iso-prostaglandin-F2α (8-isoPGF2α) and 8-hydroxy-deoxyguanosine (8-OHdG)]. Subsequently, we examined interactions between three urinary EDCs and nearly 4.6 million genetic variants for three urinary oxidative stress markers by the general linear model. RESULTS Urinary BPA, BPF and TCS were positively associated with HNE-MA, 8-isoPGF2α and 8-OHdG. Significant rs6855040 (4p15.32/between SNORA75B and QDPR)-BPA, rs1112943 (4q35.1/SNX25)-TCS interactions were associated with the 8-isoPGF2α levels (all P < 5 × 10-8). In addition, rs4656116 (1p22.3/CACL1), rs16958760 (17p11.2/between USP43 and DHRS7C) and rs11651078 (17p11.2/LOC339260) showed significant gene-TCS interactions with 8-OHdG (all P < 5 × 10-8). The gene-level analysis found significant interaction between SNX25 and TCS for 8-isoPGF2α levels (P < 2.12 × 10-6). CONCLUSION Our results identify several gene-EDCs interactions for oxidative stress, highlighting that EDCs may modify the effect of genetic variants on oxidative stress.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Deng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoping Miao
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Jianbo Tian
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
15
|
Wang S, Li J, Wang Y. M2PP: a novel computational model for predicting drug-targeted pathogenic proteins. BMC Bioinformatics 2022; 23:7. [PMID: 34983358 PMCID: PMC8728953 DOI: 10.1186/s12859-021-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detecting pathogenic proteins is the origin way to understand the mechanism and resist the invasion of diseases, making pathogenic protein prediction develop into an urgent problem to be solved. Prediction for genome-wide proteins may be not necessarily conducive to rapidly cure diseases as developing new drugs specifically for the predicted pathogenic protein always need major expenditures on time and cost. In order to facilitate disease treatment, computational method to predict pathogenic proteins which are targeted by existing drugs should be exploited. RESULTS In this study, we proposed a novel computational model to predict drug-targeted pathogenic proteins, named as M2PP. Three types of features were presented on our constructed heterogeneous network (including target proteins, diseases and drugs), which were based on the neighborhood similarity information, drug-inferred information and path information. Then, a random forest regression model was trained to score unconfirmed target-disease pairs. Five-fold cross-validation experiment was implemented to evaluate model's prediction performance, where M2PP achieved advantageous results compared with other state-of-the-art methods. In addition, M2PP accurately predicted high ranked pathogenic proteins for common diseases with public biomedical literature as supporting evidence, indicating its excellent ability. CONCLUSIONS M2PP is an effective and accurate model to predict drug-targeted pathogenic proteins, which could provide convenience for the future biological researches.
Collapse
Affiliation(s)
- Shiming Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
16
|
He H, Deng Y, Wan H, Shen N, Li J, Zeng Q, Chang J, Lu Q, Miao X, Tian J, Zhong R. Urinary bisphenol A and its interaction with CYP17A1 rs743572 are associated with breast cancer risk. CHEMOSPHERE 2022; 286:131880. [PMID: 34426286 DOI: 10.1016/j.chemosphere.2021.131880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Bisphenol A (BPA), a common endocrine disrupter, can be activated by cytochrome P450 (CYP) metabolizing enzymes and might influence the development of breast cancer (BC). We hypothesized that BPA could interact with CYP genes, synergistically contributing to the BC risk. METHODS Urinary BPA was measured in a total of 302 newly diagnosed BC patients and 302 healthy controls by ultra-high performance liquid chromatography-high resolution mass spectrometry. A set of seven CYP gene polymorphisms was genotyped by using the Sequenom MassARRAY system. A multivariate logistic regression model was used to assess the associations of BPA and BPA-SNP interaction with BC risk. RESULTS BC patients had a higher urinary BPA concentration than healthy individuals (P < 0.001). Each 1-unit increase in log-transformed urinary BPA was associated with a 54 % increased BC risk [95 % confidence interval (CI), 1.34-1.77, P < 0.001]. Individuals with the CYP19A1 rs1902580 GA + AA genotype showed a significantly higher BC risk than those with the GG genotype (OR = 1.45, 95 % CI, 1.01-2.09, P < 0.05). A significant BPA-CYP17A1 rs743572 interaction was found to be associated with a higher risk of BC (Pinteraction = 0.020). Compared with low-BPA individuals carrying CYP17A1 rs743572 GG genotypes, high-BPA individuals with the GA + AA genotype had a higher BC risk, with an odds ratio of 2.49 (95 % CI, 1.52-4.13, P < 0.05). CONCLUSIONS The positive association of BPA exposure with BC risk might be modified by CYP17A1 rs743572, providing evidence for the interaction effect of environment-genes on the etiology of BC.
Collapse
Affiliation(s)
- Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Deng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Hao Wan
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Targeting Estrogens and Various Estrogen-Related Receptors against Non-Small Cell Lung Cancers: A Perspective. Cancers (Basel) 2021; 14:cancers14010080. [PMID: 35008242 PMCID: PMC8750572 DOI: 10.3390/cancers14010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancers (NSCLCs) account for ~85% of lung cancer cases worldwide. Mammalian lungs are exposed to both endogenous and exogenous estrogens. The expression of estrogen receptors (ERs) in lung cancer cells has evoked the necessity to evaluate the role of estrogens in the disease progression. Estrogens, specifically 17β-estradiol, promote maturation of several tissue types including lungs. Recent epidemiologic data indicate that women have a higher risk of lung adenocarcinoma, a type of NSCLC, when compared to men, independent of smoking status. Besides ERs, pulmonary tissues both in healthy physiology and in NSCLCs also express G-protein-coupled ERs (GPERs), epidermal growth factor receptor (EGFRs), estrogen-related receptors (ERRs) and orphan nuclear receptors. Premenopausal females between the ages of 15 and 50 years synthesize a large contingent of estrogens and are at a greater risk of developing NSCLCs. Estrogen-ER/GPER/EGFR/ERR-mediated activation of various cell signaling molecules regulates NSCLC cell proliferation, survival and apoptosis. This article sheds light on the most recent achievements in the elucidation of sequential biochemical events in estrogen-activated cell signaling pathways involved in NSCLC severity with insight into the mechanism of regulation by ERs/GPERs/EGFRs/ERRs. It further discusses the success of anti-estrogen therapies against NSCLCs.
Collapse
|
18
|
Stanic B, Samardzija Nenadov D, Fa S, Pogrmic-Majkic K, Andric N. Integration of data from the cell-based ERK1/2 ELISA and the Comparative Toxicogenomics Database deciphers the potential mode of action of bisphenol A and benzo[a]pyrene in lung neoplasm. CHEMOSPHERE 2021; 285:131527. [PMID: 34329126 DOI: 10.1016/j.chemosphere.2021.131527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Chemicals can activate a variety of signaling pathways, initiating changes in gene expression and cellular functions. Here, we combined experimental data on the chemical-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation with the Comparative Toxicogenomics Database (CTD) to connect signaling, genes, and phenotypes to reveal the potential chemical's mode of action (MOA) responsible for the disease state. Experimental data on ERK1/2 activation were derived from the cell-based phospho-ERK1/2 ELISA on human alveolar epithelial cells A549. A549 cells were exposed to bisphenol A (BPA), benzo[a]pyrene (BaP), tributyltin (TBT), and ibuprofen from 10-12 M to 10-5 M. Results show that BPA, BaP, and TBT can activate ERK1/2 in A549 cells. We selected BPA and BaP to elucidate the molecular events connecting chemical exposure, ERK1/2 signaling, phenotypes, and lung neoplasm (LN) using CTD. CTD analysis showed that BPA and BaP share 26 mitogen-activated protein kinase 1/3 (MAPK1/3) signaling genes associated with LN. Phenotype prioritization revealed 37 BPA, 10 BaP, and 11 shared key phenotypes associated with LN. Alignment of MAPK1/3 signaling genes and phenotypes showed that ERK1/2 and oxidative stress, EGFR gene, and positive regulation of cell proliferation and migration could be the shared key events (KE) for BPA and BaP. This analysis also identified protein kinase B and ERK1/2 signaling, FGF9, FGFR1 and FGFR2 genes, positive regulation of cell proliferation and angiogenesis as KE in MOA for BPA, whereas ERK1/2 signaling, IL6 and DAB2IP genes, negative regulation of cell proliferation and inflammatory response were identified as KE in MOA for BaP.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Svetlana Fa
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
19
|
Pan Q, Wu K, Tan J, Li Y, Liang X, Su M. Anti-neoplastic characteristics and potential targets of calycosin against bisphenol A-related osteosarcoma: bioinformatics analysis. Bioengineered 2021; 12:4278-4288. [PMID: 34311656 PMCID: PMC8806932 DOI: 10.1080/21655979.2021.1956401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Environmentally, bisphenol A (BPA) is a well-known pollutant caused human health risk, including osteosarcoma (OS). OS, a deadly bone neoplasia, may occur in children and adults. However, the anti-OS pharmacotherapy prescribes limitedly in clinical practice. Interestingly, previous experimental evidences indicate calycosin-exerting potential anti-OS actions. Thus, in this report, we aimed to further characterize and detail the therapeutic targets and molecular mechanisms of calycosin-anti-BPA-related OS by using network pharmacology and molecular docking analyses. In results, the bioinformatics data disclosed all mapped, core targets, biological functions, molecular pathways of calycosin to treat BPA-related OS. The computational analysis using molecular docking indicated that potential binding ability of core targets in calycosin to treat BPA-related OS was identified. Moreover, detailed biological functions and optimal pathways of calycosin-anti-BPA-related OS were revealed, as shown in integrated network maps. Taken together, these network pharmacology and structural biology findings illustrate the core biotargets, pharmacological functions and pathways of calycosin-anti-BPA-related OS. Potentially, these core targets identified by molecular docking may attribute to the potential clinical application of calycosin against BPA-related OS.
Collapse
Affiliation(s)
- Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Ka Wu
- Department of Pharmacy, The Second People's Hospital of Nanning City, the Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiachang Tan
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, PR China
| | - Yu Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Xiao Liang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| |
Collapse
|
20
|
Ramírez V, Gálvez-Ontiveros Y, Porras-Quesada P, Martinez-Gonzalez LJ, Rivas A, Álvarez-Cubero MJ. Metabolic pathways, alterations in miRNAs expression and effects of genetic polymorphisms of bisphenol a analogues: A systematic review. ENVIRONMENTAL RESEARCH 2021; 197:111062. [PMID: 33798517 DOI: 10.1016/j.envres.2021.111062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is one of the most common endocrine disruptors found in the environment and its harmful health effects in humans and wildlife have been extensively reported One of the main aims of this review was to examine the metabolic pathways of BPA and BPA substitutes and the endocrine disrupting properties of their metabolites. According to the available literature, phase I and phase II metabolic reactions play an important role in the detoxification process of bisphenols (BPs), but their metabolism can also lead to the formation of highly reactive metabolites. The second part of this work addresses the associations between exposure to BPA and its analogues with the alterations in miRNAs expression and the effects of single nucleotide polymorphisms (SNPs). Available scientific evidence shows that BPs can dysregulate the expression of several miRNAs, and in turn, these miRNAs could be considered as epigenetic biomarkers to prevent the development of a variety of BP-mediated diseases. Interestingly, genetic polymorphisms are able to modify the relationship of BPA exposure with the risk of adverse health effects, suggesting that interindividual genetic differences modulate the susceptibility to the effects of environmental contaminants.
Collapse
Affiliation(s)
- Viviana Ramírez
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Patricia Porras-Quesada
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Ana Rivas
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - María Jesús Álvarez-Cubero
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| |
Collapse
|
21
|
Nie H, Wang F, Zhang Y, Zhang S, Han X, Zhang X, Guo H, He M. Associations of serum bisphenol A levels with incident chronic kidney disease risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145401. [PMID: 33545483 DOI: 10.1016/j.scitotenv.2021.145401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 05/26/2023]
Abstract
Associations of bisphenol A (BPA) levels with renal disease are inconsistent. The present prospective study aims to evaluate the association of serum BPA levels with chronic kidney disease (CKD) in a Chinese middle-aged and elderly population. At baseline 1370 participants (mean age 61.7 years, 58.8% females) free of kidney disease and cancer were followed up nearly 10 years. Baseline serum BPA concentration was measured with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Multivariable logistic regression model was used to investigate relationship between serum BPA levels and incident CKD risk. During a 10-year follow-up, 246 individuals developed CKD. Baseline serum BPA concentration was 2.92 (1.00, 5.27) ng/mL. At baseline, after adjustment for multiple covariates serum BPA levels were negatively correlated with eGFR levels (β = -0.068, P = 0.009). Compared to those with low levels of serum BPA, participants with high levels had a significant negative association with CKD [ORs (95% CI) = 0.35 (0.25, 0.50), P < 0.001], and this association was not modified by conventional risk factors. The negative associations remained in females but not in males (P for interaction = 0.016). Significant interaction between baseline eGFR and serum BPA levels on CKD risk was also found (P for interaction = 0.027), Except subjects with 60-70 mL/min/1.73 m2 eGFR at baseline, inverse association robustly existed between serum BPA levels and incident CKD risk in the other eGFR subgroups. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Hongli Nie
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Han
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
22
|
Rodriguez-Lara V, Avila-Costa MR. An Overview of Lung Cancer in Women and the Impact of Estrogen in Lung Carcinogenesis and Lung Cancer Treatment. Front Med (Lausanne) 2021; 8:600121. [PMID: 34079807 PMCID: PMC8165182 DOI: 10.3389/fmed.2021.600121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Lung cancer incidence and mortality have significantly increased in women worldwide. Lung adenocarcinoma is the most common form of lung cancer globally. This type of lung cancer shows differences by sex, including the mutational burden, behavior, clinical characteristics, and response to treatment. The effect of sex on lung cancer patients' survival is still controversial; however, lung adenocarcinoma is considered a different disease in women and men. Moreover, lung adenocarcinoma is strongly influenced by estrogen and is also different depending on the hormonal status of the patient. Young pre-menopausal women have been explored as an independent group. They presented in more advanced stages at diagnosis, exhibited more aggressive tumors, and showed poor survival compared to men and post-menopausal women, supporting the role of sex hormones in this pathology. Several reports indicate the estrogen's role in lung carcinogenesis and tumor progression. Thus, there are currently some clinical trials testing the efficacy of antihormonal therapy in lung cancer treatment. This mini review shows the updated data about lung cancer in women, its characteristics, the etiological factors that influence carcinogenesis, and the critical role of estrogen in lung cancer and treatment.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Laboratory, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
23
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|