1
|
Basak B, Kumar R, Bharadwaj AVSLS, Kim TH, Kim JR, Jang M, Oh SE, Roh HS, Jeon BH. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. BIORESOURCE TECHNOLOGY 2023; 369:128413. [PMID: 36462762 DOI: 10.1016/j.biortech.2022.128413] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The inherent recalcitrance of lignocellulosic biomass is a significant barrier to efficient lignocellulosic biorefinery owing to its complex structure and the presence of inhibitory components, primarily lignin. Efficient biomass pretreatment strategies are crucial for fragmentation of lignocellulosic biocomponents, increasing the surface area and solubility of cellulose fibers, and removing or extracting lignin. Conventional pretreatment methods have several disadvantages, such as high operational costs, equipment corrosion, and the generation of toxic byproducts and effluents. In recent years, many emerging single-step, multi-step, and/or combined physicochemical pretreatment regimes have been developed, which are simpler in operation, more economical, and environmentally friendly. Furthermore, many of these combined physicochemical methods improve biomass bioaccessibility and effectively fractionate ∼96 % of lignocellulosic biocomponents into cellulose, hemicellulose, and lignin, thereby allowing for highly efficient lignocellulose bioconversion. This review critically discusses the emerging physicochemical pretreatment methods for efficient lignocellulose bioconversion for biofuel production to address the global energy crisis.
Collapse
Affiliation(s)
- Bikram Basak
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - A V S L Sai Bharadwaj
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA Campus, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA Campus, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si 200-701, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Overexpression of LAS21 in Cellulase-Displaying Saccharomyces cerevisiae for High-Yield Ethanol Production from Pretreated Sugarcane Bagasse. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The valorization of lignocellulosic feedstocks into biofuels and biochemicals has received much attention due to its environmental friendliness and sustainability. However, engineering an ideal microorganism that can both produce sufficient cellulases and ferment ethanol is highly challenging. In this study, we have tested seven different genes that are involved in glycosylphosphatidylinositol (GPI) biosynthesis and remodeling for the improvement of cellulase activity tethered on the S. cerevisiae cell surface. It was found that the overexpression of LAS21 can improve β-glucosidase activity by 48.8% compared to the original strain. Then, the three cellulase genes (cellobiohydrolase, endoglucanase, and β-glucosidase) and the LAS21 gene were co-introduced into a diploid thermotolerant S. cerevisiae strain by a multiple-round transformation approach, resulting in the cellulolytic ECBLCCE5 strain. Further optimization of the bioprocess parameters was found to enhance the ethanol yield of the ECBLCCE5 strain. Scaling up the valorization of pretreated sugarcane bagasses in a 1 L bioreactor resulted in a maximum ethanol concentration of 28.0 g/L (86.5% of theoretical yield). Our study provides a promising way to improve the economic viability of second-generation ethanol production. Moreover, the engineering of genes involved in GPI biosynthesis and remodeling can be applied to other yeast cell surface display applications.
Collapse
|
3
|
Soltaninejad A, Jazini M, Karimi K. Sustainable bioconversion of potato peel wastes into ethanol and biogas using organosolv pretreatment. CHEMOSPHERE 2022; 291:133003. [PMID: 34808197 DOI: 10.1016/j.chemosphere.2021.133003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Potato processing industries generate considerable amounts of residues, i.e., potato peel wastes (PPW). Valorization of PPW for bioethanol and biogas production via a biorefining process was investigated in this study. Organosolv pretreatment was performed on the PPW using 50-75% (v/v) ethanol solution at 120-180 °C with/without the presence of 1% (w/w) H2SO4 (as a catalyst). After the pretreatment, the solvent, i.e., ethanol, was recovered by distillation. Catalyzed organosolv pretreatment using 50% (v/v) ethanol at 120 °C followed by enzymatic hydrolysis resulted in a high hydrolysate yield of 539.8 g glucose/kg dry PPW that was successfully fermented to 224.2 g ethanol/kg dry PPW. To recover more energy, the liquid fraction of the pretreatment remained after solvent recovery and the unhydrolyzed solids that remained from the enzymatic hydrolysis were anaerobically digested. From each kg of dry PPW, the anaerobic digestion produced 57.9 L biomethane. Thus, the biorefinery comprising ethanolic organosolv pretreatment, solvent recovery, enzymatic hydrolysis, ethanolic fermentation, and anaerobic digestion of residues was produced 8112 kJ energy per kg of dry PPW.
Collapse
Affiliation(s)
- Ali Soltaninejad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammadhadi Jazini
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
4
|
Devi A, Bajar S, Kour H, Kothari R, Pant D, Singh A. Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach. BIOENERGY RESEARCH 2022; 15:1820-1841. [PMID: 35154558 PMCID: PMC8819208 DOI: 10.1007/s12155-022-10401-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/24/2022] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass generated from different sectors (agriculture, forestry, industrial) act as biorefinery precursor for production of second-generation (2G) bioethanol and other biochemicals. The integration of various conversion techniques on a single platform under biorefinery approach for production of biofuel and industrially important chemicals from LCB is gaining interest worldwide. The waste generated on utilization of bio-resources is almost negligible or zero in a biorefinery along with reduced greenhouse gas emissions, which supports the circular bioeconomy concept. The economic viability of a lignocellulosic biorefinery depends upon the efficient utilization of three major components of LCB-cellulose, hemicellulose and lignin. The heterogeneous structure and recalcitrant nature of LCB is main obstacle in its valorization into bioethanol and other value-added products. The success of bioconversion process depends upon methods used during pre-treatment, hydrolysis and fermentation processes. The cost involved in each step of the bioconversion process affects the viability of cellulosic ethanol. The lignocellulose biorefinery has ample scope, but much-focused research is required to fully utilize major parts of lignocellulosic biomass with zero wastage. The present review entails lignocellulosic biomass valorization for ethanol production, along with different steps involved in its production. Various value-added products produced from LCB components were also discussed. Recent technological advances and significant challenges in bioethanol production are also highlighted in addition to future perspectives.
Collapse
Affiliation(s)
- Arti Devi
- Department of Environmental Sciences, Central University of Jammu, Jammu, 181143 Jammu and Kashmir India
| | - Somvir Bajar
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Havleen Kour
- Department of Environmental Sciences, Central University of Jammu, Jammu, 181143 Jammu and Kashmir India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Jammu, 181143 Jammu and Kashmir India
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Jammu, 181143 Jammu and Kashmir India
| |
Collapse
|
5
|
Haldar D, Purkait MK. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. CHEMOSPHERE 2021; 264:128523. [PMID: 33039689 DOI: 10.1016/j.chemosphere.2020.128523] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The process of pretreatment is considered as an indispensable unit operation in the field of lignocellulosic conversion. The traditional pretreatment operations of lignocellulosic biomass are observed as inefficient to meet the demand for an industrial adaptation. In view of that, numerous investigations are reported on various conventional pretreatment methods but very limited information's are available on the advanced technologies. The present review article provides an exclusive discussion on various emerging and environment-friendly pretreatment methods applied on a number of different feedstock materials. Further, an insight on the reaction mechanism involved with each of the technologies such as microwave, ultrasound, deep eutectic solvent, irradiation, and high force assisted pretreatment methods are elucidated for an effective valorization of lignocellulosic biomass. Hence, in a single article, the readers of this paper will get to know all important aspects of the emerging pretreatment techniques of lignocellulosic biomass including the advancements, and the mechanistic insight which will be highly beneficial towards the selection of an efficient pretreatment method for large scale of commercial implementation in a lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Mihir Kumar Purkait
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|