1
|
Upadhyay SK, Devi P, Kumar V, Pathak HK, Kumar P, Rajput VD, Dwivedi P. Efficient removal of total arsenic (As 3+/5+) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold. CHEMOSPHERE 2023; 313:137551. [PMID: 36521746 DOI: 10.1016/j.chemosphere.2022.137551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/31/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In this investigation, marigold flower-waste was activated with iron salts (MG-Fe), subsequently marigold plant extract (MG-Fe-Ex) for the adsorptive elimination of As3+ and As5+ from contaminated water. The governing factor such as medium pH, temperature, pollutant concentration, reaction time, adsorbent dose were considered for the study. The complete elimination of As3+/5+ was recorded with MG-Fe-Ex at pH 8.0, 90 min, 30 °C, dose 4 g/L, 20 mg/L of As3+/5+ and shaking rate 120 rpm, while under the identical experimental condition, MG-Fe exhibited 98.4% and 73.3% removal for As5+ and As3+, respectively. The MG-Fe-Ex contains iron oxides (Fe2O3 and Fe3O4) as a result of iron ions reaction with plant bioactive molecules as evident from x-ray diffraction analysis (XRD), energy dispersive x-ray spectroscopic (EDS) and Fourier transform infrared (FTIR) spectroscopic study. The adsorption data of As3+/5+ on MG-Fe and MG-Fe-Ex was best fitted by pseudo-first order kinetic and freundlich isotherm except As5+ adsorption on MG-Fe-Ex that can be described by langmuir isotherm model. The prevailing mechanism in adsorption of As3+/5+ on both adsorbent might be hydrogen bonding, electrostatic attraction and complexation. From the above, it is confirmed that MG-Fe-Ex adsorbent has high potential and can be used for the adsorptive elimination of As3+/5+ from contaminated water in sustainable and environmentally friendly way.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Priyanka Devi
- School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vinay Kumar
- Departement of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Prasann Kumar
- School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
2
|
Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Nguyen TH, Loganathan P, Nguyen TV, Vigneswaran S, Ha Nguyen TH, Tran HN, Nguyen QB. Arsenic removal by a pomelo peel biochar coated with iron. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Truong DQ, Loganathan P, Tran LM, Vu DL, Nguyen TV, Vigneswaran S, Naidu G. Removing ammonium from contaminated water using Purolite C100E: batch, column, and household filter studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16959-16972. [PMID: 34655380 DOI: 10.1007/s11356-021-16945-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Ammonium removal from drinking water to protect human and environmental health is one of the major global concerns. This study evaluates the performance of Purolite C100E, a commercial cation exchange resin, in eliminating ammonium in synthetic and real contaminated groundwater. The results demonstrate that the pH operation range of the resin for better ammonium removal is 3 to 8. Lower ammonium removal at low and high pH occurred due to competition from H+ and loss of ammonium as ammonia gas, respectively. Equilibrium data of ammonium removal fitted both the Langmuir and Freundlich isotherm models with the maximum Langmuir ion exchange capacities for initial ammonium concentrations of 10-200 mg/L and 50-2000 mg/L, reaching 18.37 mg/g and 40.16 mg/g, respectively. The presence of co-ions in the water reduced the ammonium removal efficiencies slightly (< 12%) in the order Mg2+ > Ca2+ > K+. The higher affinity of ammonium to adsorbent is due to its lower hydrated ionic radius and H-bonding. The maximum exchange capacity in the fluidized bed studies of the original Purolite C100E (bed height 27 cm, resin weight 75 g, initial ammonium concentration 17.4 mg/L, filtration velocity 0.5 m/h) was 10.48 mg/g. It progressively reduced slightly after three regeneration cycles to 8.79 mg/g. The column breakthrough data satisfactorily fitted the Thomas model. A household filter cartridge packed with 4 kg Purolite C100E (80 cm height) and operated at a filtration velocity of 1.9 m/h in Vietnam successfully reduced the initial 6 mg NH4+/L in groundwater (after sand filter pre-treatment) to well below the Vietnam drinking water standard (3 mg/L-QCVN 01:2009/BYT) continuously for 1 week, suggesting that such a filter can be adopted in rural areas to successfully remove ammonium from groundwater.
Collapse
Affiliation(s)
- Dai Quyet Truong
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
- School of Environmental Science and Technology, Hanoi University of Science and Technology (HUST), Hanoi, Vietnam
| | | | - Le Minh Tran
- School of Environmental Science and Technology, Hanoi University of Science and Technology (HUST), Hanoi, Vietnam
| | - Duc Loi Vu
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Tien Vinh Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia.
| | | | - Gayathri Naidu
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| |
Collapse
|
5
|
Peng Y, Azeem M, Li R, Xing L, Li Y, Zhang Y, Guo Z, Wang Q, Ngo HH, Qu G, Zhang Z. Zirconium hydroxide nanoparticle encapsulated magnetic biochar composite derived from rice residue: Application for As(III) and As(V) polluted water purification. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127081. [PMID: 34523481 DOI: 10.1016/j.jhazmat.2021.127081] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Finding a low-cost and suitable adsorbent is still in urgent need for efficient decontamination of As(III) and As(V) elements from the polluted waters. A novel zirconium hydroxide nanoparticle encapsulated magnetic biochar composite (ZBC) derived from rice residue was synthesized for the adsorptive capture of As(III) and As(V) from aqueous solutions. The results revealed that ZBC showed an acceptable magnet separation ability and its surface was encapsulated with lots of hydrous zirconium oxide nanoparticles. Compared to As(III), the adsorption of As(V) onto ZBC was mainly dependent on the pH of the solution. The intraparticle diffusion model described the adsorption process. ZBC showed satisfactory adsorption performances to As(III) and As(V) with the highest adsorption quantity of 107.6 mg/g and 40.8 mg/g at pH 6.5 and 8.5, respectively. The adsorption of As(III) and As(V) on ZBC was almost impervious with the ionic strength while the presence of coexisting ions, especially phosphate, significantly affected the adsorption process. The processes of complexation reaction and electrostatic attraction contributed to the adsorption of As(III) and As(V) onto ZBC. ZBC prepared from kitchen rice residue was found to be a low cost environmentally friendly promising adsorbent with high removal capacity for As(III) and As(V) and could be recycled easily from contaminated waters.
Collapse
Affiliation(s)
- Yaru Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi Province 712100, China.
| | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi Province 712100, China.
| | - Libin Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yimeng Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yichen Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhiqiang Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi Province 712100, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
6
|
Rahman MA, Lamb D, Rahman MM, Bahar MM, Sanderson P. Adsorption-Desorption Behavior of Arsenate Using Single and Binary Iron-Modified Biochars: Thermodynamics and Redox Transformation. ACS OMEGA 2022; 7:101-117. [PMID: 35036682 PMCID: PMC8756808 DOI: 10.1021/acsomega.1c04129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is a dangerous contaminant in drinking water which displays cogent health risks to humans. Effective clean-up approaches must be developed. However, the knowledge of adsorption-desorption behavior of As on modified biochars is limited. In this study, the adsorption-desorption behavior of arsenate (AsV) by single iron (Fe) and binary zirconium-iron (Zr-Fe)-modified biosolid biochars (BSBC) was investigated. For this purpose, BSBC was modified using Fe-chips (FeBSBC), Fe-salt (FeCl3BSBC), and Zr-Fe-salt (Zr-FeCl3BSBC) to determine the adsorption-desorption behavior of AsV using a range of techniques. X-ray photoelectron spectroscopy results revealed the partial reduction of pentavalent AsV to the more toxic trivalent AsIII form by FeCl3BSBC and Zr-FeCl3BSBC, which was not observed with FeBSBC. The Langmuir maximum AsV adsorption capacities were achieved as 27.4, 29.77, and 67.28 mg/g when treated with FeBSBC (at pH 5), FeCl3BSBC (at pH 5), and Zr-FeCl3BSBC (at pH 6), respectively, using 2 g/L biochar density and 22 ± 0.5 °C. Co-existing anions reduced the AsV removal efficiency in the order PO4 3- > CO3 2- > SO4 2- > Cl- > NO3 -, although no significant inhibitory effects were observed with cations like Na+, K+, Mg2+, Ca2+, and Al3+. The positive correlation of AsV adsorption capacity with temperature demonstrated that the endothermic process and the negative value of Gibbs free energy increased (-14.95 to -12.47 kJ/mol) with increasing temperature (277 to 313 K), indicating spontaneous reactions. Desorption and regeneration showed that recycled Fe-chips, Fe-salt, and Zr-Fe-salt-coated biochars can be utilized for the effective removal of AsV up to six-repeated cycles.
Collapse
Affiliation(s)
- Md. Aminur Rahman
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
- Department
of Public Health Engineering (DPHE), Zonal
Laboratory, Khulna 9100, Bangladesh
| | - Dane Lamb
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mohammad Mahmudur Rahman
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Md Mezbaul Bahar
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter Sanderson
- Global
Centre for Environmental Remediation (GCER), College of Engineering,
Science and Environment, The University
of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
7
|
Ryu S, Fonseka C, Naidu G, Loganathan P, Moon H, Kandasamy J, Vigneswaran S. Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr). CHEMOSPHERE 2021; 281:130869. [PMID: 34289599 DOI: 10.1016/j.chemosphere.2021.130869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
Due to increasing application in the green energy sector, rare earth elements (REEs) have become a precious commodity in the international market. The REEs, Yttrium (Y) and Lutetium (Lu) are used as catalysts in wide array of industries. SBA-15 modified with 1,4-phthaloyl diamido-propyltriethoxysilane (1,4-PA-APTES) ligands; and chromium based metal organic frameworks (MOF) modified with PMIDA (MIL-101-PMIDA) were prepared in this study as potential adsorbents for recovery of these elements. The adsorption capacities for Lu and Y on virgin SBA-15 were negligible. After modification of SBA-15, the Langmuir adsorption capacities for Lu and Y significantly increased to 17.0 and 17.9 mg/L, respectively. The Langmuir adsorption capacities of Lu and Y on PMIDA modified MIL-101 (MIL-101-PMIDA) were 63.4 and 25.3 mg/g, respectively. Higher adsorption capacities of the MOF are due to its higher surface area (1050 m2/g) and beneficial functional groups such as phosphonic group present on the adsorbent surface and it attributes to rapider REE adsorption on MIL-101-PMIDA than on1,4-PA-SBA. Lu adsorption capacity was 2.5 times higher than Y due to its superior ion-exchange capability with grafted phosphonic groups. Both adsorbents retained over 90% of adsorption capacity after 5 adsorption/desorption cycles which demonstrate the high structural stability of the materials.
Collapse
Affiliation(s)
- Seongchul Ryu
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Charith Fonseka
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Gayathri Naidu
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Paripurnanda Loganathan
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Hee Moon
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Jaya Kandasamy
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
8
|
Ding W, Wan X, Zheng H, Wu Y, Muhammad S. Sulfite-assisted oxidation/adsorption coupled with a TiO 2 supported CuO composite for rapid arsenic removal: Performance and mechanistic studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125449. [PMID: 33611039 DOI: 10.1016/j.jhazmat.2021.125449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Owing to the lower toxicity and mobility of inorganic As(V), the oxidative removal of As(III) is deemed as the optimal approach for arsenic elimination from water. Herein, a synthetic TiO2-supported CuO material (Cu-TiO2) was coupled with sulfite (S(IV)) to remove As(III) at neutral pH. The combined process coupled oxidation with adsorption (i.e., As(III) removal by Cu-TiO2/S(IV)) was superior than a divided preoxidation-adsorption process (i.e., As(V) removal by Cu-TiO2) for arsenic removal. Attractively, low concentration of As(III) (50-300 μg L-1) could be completely removed by Cu-TiO2 (0.25 g L-1)/S(IV) (0.5 mM) within 60 min. Mechanism investigations revealed that the efficient As(III) removal was attributed to the continuous oxysulfur radicals (SOx•-) oxidation and Cu-TiO2 adsorption. The surface-adsorbed and free sulfate radicals (SO4•-) were further identified as the crucial oxidizing species. The Cu-TiO2 played the dual roles as a catalyst for S(IV) activation and an absorbent for arsenic immobility. The influence of operating parameters (i.e., As(III) concentration and sulfite dosage) and water chemistry (i.e., pH, inorganic anions, dissolved organic matters, and temperature) on As(III) removal were systematically investigated and optimized. Overall, the proposed process has potential application prospects in rehabilitating the As(III)-polluted water environment using industrial waste sulfite.
Collapse
Affiliation(s)
- Wei Ding
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xinyuan Wan
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Huaili Zheng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yuyang Wu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Salam Muhammad
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
Huo JB, Yu G, Xu L, Fu ML. Porous walnut-like La 2O 2CO 3 derived from metal-organic frameworks for arsenate removal: A study of kinetics, isotherms, and mechanism. CHEMOSPHERE 2021; 271:129528. [PMID: 33434820 DOI: 10.1016/j.chemosphere.2020.129528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Exploration of renewable materials for efficient elimination of arsenic from water is highly imperative. Herein, one kind of novel porous walnut-like La2O2CO3 composite is reported for the first time, fabricated via direct pyrolysis of La-MOFs at 550 °C under the air atmosphere. The as-synthesized material predominantly consists of La2O2CO3, featuring micrometer-scale walnut-like morphology and an abundant mesoporous structure. Adsorption experiments demonstrated that a pseudo-second-order model with a high correlation coefficient (0.9976-0.9988) can depict this adsorption process in a good manner and indicates chemical adsorption. Analysis of the isotherms further revealed that this adsorption is a monolayer and homogeneous process, with an excellent adsorption capacity (210.1 As mg/g), as calculated from the Langmuir model. Thermodynamic parameters indicated this adsorption process to be a spontaneous and endothermic, with a positive change in entropy. By characterization results, it can be deduced that the anion-exchange interaction (i.e. carbonate is prone to being replaced by arsenate) and inner-sphere complexation were both responsible for arsenate removal. A broad working pH range (3.0-9.0) and a good cyclic performance (removal rate is above 90% for the fourth cycle) as well as an excellent adsorption capacity make this adsorbent a promising arsenic scavenger.
Collapse
Affiliation(s)
- Jiang-Bo Huo
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guoce Yu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Lei Xu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ming-Lai Fu
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
10
|
Shen J, Wu X, Yu J, Yin F, Hao L, Lin C, Zhu L, Luo C, Zhang C, Xu F. Hydrogen bonding interactions between arsenious acid and dithiothreitol/dithioerythritol at different pH values: a computational study with an explicit solvent model. NEW J CHEM 2021. [DOI: 10.1039/d1nj03191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvents participate in the most stable complex formation between arsenious acid and DTT/DTE in their optimal pH ranges.
Collapse
Affiliation(s)
- Jinyu Shen
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Jinsong Yu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Fengqin Yin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Liling Hao
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Caixia Lin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Lizhi Zhu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Chunyan Luo
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| |
Collapse
|