1
|
Wei J, Li Z, Chen X, Li C, Sun Y, Wang J, Lyapustin A, Brasseur GP, Jiang M, Sun L, Wang T, Jung CH, Qiu B, Fang C, Liu X, Hao J, Wang Y, Zhan M, Song X, Liu Y. Separating Daily 1 km PM 2.5 Inorganic Chemical Composition in China since 2000 via Deep Learning Integrating Ground, Satellite, and Model Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18282-18295. [PMID: 37114869 DOI: 10.1021/acs.est.3c00272] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fine particulate matter (PM2.5) chemical composition has strong and diverse impacts on the planetary environment, climate, and health. These effects are still not well understood due to limited surface observations and uncertainties in chemical model simulations. We developed a four-dimensional spatiotemporal deep forest (4D-STDF) model to estimate daily PM2.5 chemical composition at a spatial resolution of 1 km in China since 2000 by integrating measurements of PM2.5 species from a high-density observation network, satellite PM2.5 retrievals, atmospheric reanalyses, and model simulations. Cross-validation results illustrate the reliability of sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-) estimates, with high coefficients of determination (CV-R2) with ground-based observations of 0.74, 0.75, 0.71, and 0.66, and average root-mean-square errors (RMSE) of 6.0, 6.6, 4.3, and 2.3 μg/m3, respectively. The three components of secondary inorganic aerosols (SIAs) account for 21% (SO42-), 20% (NO3-), and 14% (NH4+) of the total PM2.5 mass in eastern China; we observed significant reductions in the mass of inorganic components by 40-43% between 2013 and 2020, slowing down since 2018. Comparatively, the ratio of SIA to PM2.5 increased by 7% across eastern China except in Beijing and nearby areas, accelerating in recent years. SO42- has been the dominant SIA component in eastern China, although it was surpassed by NO3- in some areas, e.g., Beijing-Tianjin-Hebei region since 2016. SIA, accounting for nearly half (∼46%) of the PM2.5 mass, drove the explosive formation of winter haze episodes in the North China Plain. A sharp decline in SIA concentrations and an increase in SIA-to-PM2.5 ratios during the COVID-19 lockdown were also revealed, reflecting the enhanced atmospheric oxidation capacity and formation of secondary particles.
Collapse
Affiliation(s)
- Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, United States
| | - Zhanqing Li
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, United States
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chi Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, University of Iowa, Iowa 52242, United States
| | - Alexei Lyapustin
- Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Guy Pierre Brasseur
- Max Planck Institute for Meteorology, Hamburg 20146, Germany
- National Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Mengjiao Jiang
- Max Planck Institute for Meteorology, Hamburg 20146, Germany
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Lin Sun
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chang Hoon Jung
- Department of Health Management, Kyungin Women's University, Incheon 21041, Korea
| | - Bing Qiu
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China
| | - Cuilan Fang
- Jiulongpo Center for Disease Control and Prevention, Chongqing 400039, China
| | - Xuhui Liu
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030015, China
| | - Jinrui Hao
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030015, China
| | - Yan Wang
- Harbin Center for Disease Control and Prevention, Harbin 150010, China
| | - Ming Zhan
- Pudong Center for Disease Control and Prevention, Shanghai 200120, China
| | | | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Xia X, Niu X, Chan K, Xu H, Shen Z, Cao JJ, Wu S, Qiu H, Ho KF. Effects of indoor air purification intervention on blood pressure, blood‑oxygen saturation, and heart rate variability: A double-blinded cross-over randomized controlled trial of healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162516. [PMID: 36868269 DOI: 10.1016/j.scitotenv.2023.162516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The use of indoor air purifier (IAP) has received growing attention as a mitigation strategy for reducing indoor air pollution, but the evidence on their cardiovascular benefits is unclear. This study aims to evaluate whether the use of IAP can reduce the adverse effects of indoor particulate matter (PM) on cardiovascular health among young healthy population. A randomized, double-blind, cross-over, IAP intervention of 38 college students was conducted. The participants were assigned into two groups to receive the true and sham IAPs for 36 h in random order. Systolic and diastolic blood pressure (SBP; DBP), blood oxygen saturation (SpO2), heart rate variability (HRV) and indoor size-fractioned particulate matter (PM) were real-time monitored throughout the intervention. We found that IAP could reduce indoor PM by 41.7-50.5 %. Using IAP was significantly associated with a reduction of 2.96 mmHg (95 % CI: -5.71, -0.20) in SBP. Increased PM was significantly associated with increased SBP (e.g., 2.17 mmHg [0.53, 3.81], 1.73 mmHg [0.32, 3.14] and 1.51 mmHg [0.28, 2.75] for an IQR increment of PM1 [16.7 μg/m3], PM2.5 [20.6 μg/m3] and PM10 [37.9 μg/m3] at lag 0-2 h, respectively) and decreased SpO2 (-0.44 % [-0.57, -0.29], -0.41 % [-0.53, -0.30] and - 0.40 % [-0.51, -0.30] for PM1, PM2.5 and PM10 at lag 0-1 h, respectively), which could last for about 2 h. Using IAPs could halve indoor PM levels, even in relatively low air pollution settings. The exposure-response relationships suggested that the benefits of IAPs on BP may only be observed when indoor PM exposure is reduced to a certain level.
Collapse
Affiliation(s)
- Xi Xia
- School of Public Health, Shaanxi University of Chinese Medicine, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, China.
| | - Kahung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - ZhenXing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - ShaoWei Wu
- School of Public Health, Xi'an Jiaotong University, China
| | - Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Zhang Z, Liu M, Zhao L, Liu L, Guo W, Yu J, Yang H, Lai X, Zhang X, Yang L. Urinary phthalate metabolites and heart rate variability: A panel study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121760. [PMID: 37142210 DOI: 10.1016/j.envpol.2023.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Phthalates exposure is linked with cardiovascular disease. Decreased heart rate variability (HRV) is an early indicator of cardiac autonomic imbalance. We conducted a longitudinal panel study in 127 Chinese adults with 3 repeated visits to explore the associations of individual and mixtures of phthalates exposure with HRV. We quantified 10 urinary phthalate metabolites by gas chromatograph-tandem mass spectrometer (GC-MS/MS) and 6 HRV indices by 3-channel digital Holter monitors. Linear mixed-effect (LME) models and Bayesian kernel machine regression (BKMR) models were separately implemented to evaluate the associations. After multivariate adjustments, we found that urinary mono-ethyl phthalate (MEP), mono-iso-butyl phthalate (MiBP), and mono-n-butyl phthalate (MBP) at lag 0 day were inversely associated with low-frequency power (LF) or total power (TP) (all P-FDR <0.05). In mixture analysis, we observed negative overall associations of phthalate mixtures at lag 0 day with LF or TP, and MiBP was the major contributor. Moreover, stratified analysis suggested that the inverse relationships of MiBP at lag 0 day with LF and TP were more prominent in subjects aged >50 years (all Pinteraction < 0.01). Our findings revealed that exposure to individual and mixtures of phthalates, especially MiBP, were related to decreased HRV.
Collapse
Affiliation(s)
- Ziqian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Lyu L, Xu Y, Wang H, Guo X, Gao Y, Duan S, Deng F, Guo X, Wang Y. Changes in heart rate variability of healthy subjects shortly exposed to printing shop particles and the effect of air purifier intervention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120418. [PMID: 36257562 DOI: 10.1016/j.envpol.2022.120418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Particulate matter (PM) released by printers may cause airway inflammation and cardiac electrophysiological changes. We conducted a two-stage crossover study to examine the association between short-term exposure to printing shop particles (PSPs) and the heart rate variability (HRV) among healthy volunteers, as well as to evaluate the effect of air purifier intervention. The on-site assessments of PSPs and individual HRV parameters of the volunteers were used to analyze the influence of size-fractionated PSPs and air purifier intervention on HRV at different lag times after PSPs exposure (0 min, 5 min, 15 min, and 30 min) by using the linear mixed-effects models. We observed that changes in 6 HRV parameters were associated with particle mass concentration (PMC) of PSPs, and changes in 8 HRV parameters were associated with particle number concentration (PNC) of PSPs. The sensitive HRV parameters were the square root of the mean of the sum of the squares of differences between adjacent NN intervals (rMSSD), NN50 count divided by the total number of all NN intervals (pNN50), normalized high frequency power (nHF), very high frequency power (VHF), normalized low frequency power (nLF), and the ratio of low frequency power to high frequency power (LF/HF). Most HRV parameters exhibited the strongest effect associated with PMC and PNC at a lag time of 30 min. The air purifier intervention markedly reduced the PNC and PMC of size-fractionated PSPs, enhanced 5 HRV parameters, and decreased the nLF and LF/HF. Our study suggests that short-term exposure to PSPs can affect HRV parameters, reflecting changes in cardiac autonomic nervous activity, and the use of an air purifier can reduce the concentration of PSPs and improve the autonomic nervous system activity of the exposed individuals.
Collapse
Affiliation(s)
- Lizhi Lyu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Yu Xu
- Department of Respiratory Medicine, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Hongbo Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Xin Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Yanjun Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Shumin Duan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China.
| |
Collapse
|
5
|
Han C, Xu R, Ye T, Xie Y, Zhao Y, Liu H, Yu W, Zhang Y, Li S, Zhang Z, Ding Y, Han K, Fang C, Ji B, Zhai W, Guo Y. Mortality burden due to long-term exposure to ambient PM 2.5 above the new WHO air quality guideline based on 296 cities in China. ENVIRONMENT INTERNATIONAL 2022; 166:107331. [PMID: 35728411 DOI: 10.1016/j.envint.2022.107331] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Quantifying the spatial and socioeconomic variation of mortality burden attributable to particulate matters with aerodynamic diameter ≤ 2.5 µm (PM2.5) has important implications for pollution control policy. This study aims to examine the regional and socioeconomic disparities in the mortality burden attributable to long-term exposure to ambient PM2.5 in China. METHODS Using data of 296 cities across China from 2015 to 2019, we estimated all-cause mortality (people aged ≥ 16 years) attributable to the long-term exposure to ambient PM2.5 above the new WHO air quality guideline (5 µg/m3). Attributed fraction (AF), attributed deaths (AD), attributed mortality rate (AMR) and total value of statistical life lost (VSL) by regional and socioeconomic levels were reported. RESULTS Over the period of 2015-2019, 17.0% [95% confidence interval (CI): 7.4-25.2] of all-cause mortality were attributable to long-term exposure to ambient PM2.5, corresponding to 1,425.2 thousand deaths (95% CI: 622.4-2,099.6), 103.5/105 (95% CI: 44.9-153.3) AMR, and 1006.9 billion USD (95% CI: 439.8-1483.4) total VSL per year. The AMR decreased from 120.5/105 (95% CI: 52.9-176.6) to 92.7/105 (95% CI:39.9-138.5) from 2015 to 2019. The highest mortality burden was observed in the north region (annual average AF = 24.2%, 95% CI: 10.8-35.1; annual average AMR = 137.0/105, 95% CI: 60.9-198.5). The highest AD and economic loss were observed in the east region (annual average AD = 390.0 thousand persons, 95% CI: 170.3-574.6; annual total VSL = 275.6 billion USD, 95% CI: 120.3-406.0). Highest AMR was in the cities with middle level of GDP per capita (PGDP)/urbanization. The majority of the top ten cities of AF, AMR and VSL were in high and middle PGDP/urbanization regions. CONCLUSION There were significant regional and socioeconomic disparities in PM2.5 attributed mortality burden among Chinese cities, suggesting differential mitigation policies are required for different regions in China.
Collapse
Affiliation(s)
- Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong Province 264003, PR China
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing 100191, PR China; Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing 100191, PR China
| | - Yang Zhao
- The George Institute for Global Health at Peking University Health Science Center, Beijing 100600, PR China; WHO Collaborating Centre on Implementation Research for Prevention & Control of NCDs, VIC 3010, Australia
| | - Haiyun Liu
- Yantai Center for Disease Control and Prevention, Yantai, Shandong 264003, PR China
| | - Wenhua Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yajuan Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Zhongwen Zhang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong Province 264003, PR China
| | - Yimin Ding
- School of Software, Tongji University, Shanghai 200092, PR China
| | - Kun Han
- GuotaiJunan Securities, Shanghai 200030, PR China; School of Economics, Fudan University, Shanghai 200433, PR China
| | - Chang Fang
- School of Public Health, Haerbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Baocheng Ji
- Linyi Municipal Ecology and Environment Bureau, Linyi, Shandong 276000, PR China
| | - Wenhui Zhai
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yuming Guo
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong Province 264003, PR China; School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
6
|
Yi W, Zhao F, Pan R, Zhang Y, Xu Z, Song J, Sun Q, Du P, Fang J, Cheng J, Liu Y, Chen C, Lu Y, Li T, Su H, Shi X. Associations of Fine Particulate Matter Constituents with Metabolic Syndrome and the Mediating Role of Apolipoprotein B: A Multicenter Study in Middle-Aged and Elderly Chinese Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10161-10171. [PMID: 35802126 DOI: 10.1021/acs.est.1c08448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) was reported to be associated with metabolic syndrome (MetS), but how PM2.5 constituents affect MetS and the underlying mediators remains unclear. We aimed to investigate the associations of long-term exposure to 24 kinds of PM2.5 constituents with MetS (defined by five indicators) in middle-aged and elderly adults and to further explore the potential mediating role of apolipoprotein B (ApoB). A multicenter study was conducted by recruiting subjects (n = 2045) in the Beijing-Tianjin-Hebei region from the cohort of Sub-Clinical Outcomes of Polluted Air in China (SCOPA-China Cohort). Relationships among PM2.5 constituents, serum ApoB levels, and MetS were estimated by multiple logistic/linear regression models. Mediation analysis quantified the role of ApoB in "PM2.5 constituents-MetS" associations. Results indicated PM2.5 was significantly related to elevated MetS prevalence. The MetS odds increased after exposure to sulfate (SO42-), calcium ion (Ca2+), magnesium ion (Mg2+), Si, Zn, Ca, Mn, Ba, Cu, As, Cr, Ni, or Se (odds ratios ranged from 1.103 to 3.025 per interquartile range increase in each constituent). PM2.5 and some constituents (SO42-, Ca2+, Mg2+, Ca, and As) were positively related to serum ApoB levels. ApoB mediated 22.10% of the association between PM2.5 and MetS. Besides, ApoB mediated 24.59%, 50.17%, 12.70%, and 9.63% of the associations of SO42-, Ca2+, Ca, and As with MetS, respectively. Our findings suggest that ApoB partially mediates relationships between PM2.5 constituents and MetS risk in China.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, 4006 Queensland, Australia
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Yingchun Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No. 81 Meishan Road, Shushan District, Hefei, Anhui 230031, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
7
|
Feng X, Shao L, Jones T, Li Y, Cao Y, Zhang M, Ge S, Yang CX, Lu J, BéruBé K. Oxidative potential and water-soluble heavy metals of size-segregated airborne particles in haze and non-haze episodes: Impact of the "Comprehensive Action Plan" in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152774. [PMID: 34986423 DOI: 10.1016/j.scitotenv.2021.152774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 05/17/2023]
Abstract
Air pollution is a major environmental health challenge in megacities, and as such a Comprehensive Action Plan (CAP) was issued in 2017 for Beijing, the capital city of China. Here we investigated the size-segregated airborne particles collected after the implementation of the CAP, intending to understand the change of oxidative potential and water-soluble heavy metal (WSHM) levels in 'haze' and 'non-haze' days. The DNA damage and the levels of WSHM were analyzed by Plasmid Scission Assay (PSA) and High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) techniques. The PM mass concentration was higher in the fine particle size (0.43-2.1 μm) during haze days, except for the samples affected by mineral dust. The particle-induced DNA damage caused by fine sized particles (0.43-2.1 μm) exceeded that caused by the coarse sized particles (4.7-10 μm). The DNA damage from haze day particles significantly exceeded those collected on non-haze days. Prior to the instigation of the CAP, the highest value of DNA damage decreased, and DNA damage was seen in the finer size (0.43-1.1 μm). The Pearson correlation coefficient between the concentrations of water-soluble Pb, Cr, Cd and Zn were positively correlated with DNA damage, suggesting that these WSHM had significant oxidative potential. The mass concentrations of water-soluble trace elements (WSTE) and individual heavy metals were enriched in the finer particles between 0.43 μm to 1.1 μm, implying that smaller sized particles posed higher health risks. In contrast, the significant reduction in the mass concentration of water-soluble Cd and Zn, and the decrease of the maximum and average values of DNA damage after the CAP, demonstrated its effectiveness in restricting coal-burning emissions. These results have demonstrated that the Beijing CAP policy has been successful in reducing the toxicity of 'respirable' ambient particles.
Collapse
Affiliation(s)
- Xiaolei Feng
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Tim Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, UK
| | - Yaowei Li
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Mengyuan Zhang
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shuoyi Ge
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Cheng-Xue Yang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jing Lu
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
8
|
Khan SAR, Ponce P, Yu Z, Golpîra H, Mathew M. Environmental technology and wastewater treatment: Strategies to achieve environmental sustainability. CHEMOSPHERE 2022; 286:131532. [PMID: 34303912 DOI: 10.1016/j.chemosphere.2021.131532] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 05/24/2023]
Abstract
Water is the vital liquid for human subsistence and is used as a resource in various production processes. However, the degradation of the environment is being reflected in the water resources of the planet. One of the leading causes of water pollution is ineffective wastewater treatment, which results in greywater being returned to the environment without having gone through a decontamination process. Ideally, wastewater should have the lowest concentration of polluting materials to be reused and exploited in other activities, such as agriculture or the generation of renewable energy. However, in its various forms, technological progress plays a vital role in improving wastewater treatment processes, becoming a determining factor in improving greywater quality. This study examines how environmental technology contributes to wastewater improvement in 16 selected OECD countries during 2000-2019. Annualized information is used and collected from various official sources of information, subsequently processed with various econometric approaches. The results obtained show a heterogeneous behaviour in the quantiles of wastewater treatment, environmental technology and renewable energy are positively related to an increase in wastewater treatment between 0.09% - 0.20% and 3.5 e-12% - 5.74 e-12%, respectively. Based on the results obtained, the policy implications suggest promoting environmental technology to improve wastewater treatment.
Collapse
Affiliation(s)
- Syed Abdul Rehman Khan
- School of Management and Engineering, Xuzhou University of Technology, Xuzhou, China; Department of Business Administration, ILMA University, Karachi, Pakistan; Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing, China.
| | - Pablo Ponce
- Carrera de Economía and Centro de Investigaciones Sociales y Económicas, Universidad Nacional de Loja, Loja, Ecuador.
| | - Zhang Yu
- School of Economics and Management, Chang'an University, Xi'an, China.
| | - Hêriş Golpîra
- Department of Industrial Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Manoj Mathew
- Department of Mechanical Engineering, Shri Shakaracharya Institute of Professional Management and Technology, Chhattisgarh, India.
| |
Collapse
|