1
|
Liu K, Jiang J, Takasu K, Wan J, Gao W. Effect of Prestirring Time on Carbon Removal from Coal Fly Ash in the Flotation Technology. ACS OMEGA 2023; 8:27794-27801. [PMID: 37546604 PMCID: PMC10398837 DOI: 10.1021/acsomega.3c04121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Coal fly ash (CFA) is one of the industrial byproducts of burning coal for energy production and has unburned carbon, which negatively affects its full potential use. The flotation technology can be effective in separating unburned carbon from CFA, and the prestirring time is crucial for the ideal initial conditions during the flotation process. To find the suitable prestirring time, eight prestirring times, including 0, 1, 2, 3, 4, 5, 6, and 7 min, were selected in this paper, followed by flotation of CFA after prestirring. Parameters such as loss on ignition (LOI), the removal rate of unburned carbon (RUC), contact angle, and particle size volume fraction were used to assess the effect of prestirring time on flotation results. The results showed that the prestirring time significantly affects the CFA flotation performance. As the prestirring time increased, the LOI of CFA first decreased and then increased, and the contact angle showed the opposite trend. Besides, the prestirring time of over 2 min positively affected the fineness of the tailings. Overall, the prestirring time of 3 min had the most significant carbon removal effect, obtaining an LOI of tailings of 0.96%, a yield of 74.56%, an RUC of 72.70%, and a volume fraction less than 45 μm of 36.65%. This study provides theoretical support for improving stirring efficiency and saving flotation costs in industrial applications and is conducive to the recycling of CFA resources.
Collapse
Affiliation(s)
- Ke Liu
- Faculty
of Environmental Engineering, The University
of Kitakyushu, 1-1 Hibikino Wakamatsu, Kitakyushu, Fukuoka 8080135, Japan
- Innovation
Institute for Sustainable Maritime Architecture Research and Technology
(iSMART), Qingdao University of Technology, Qingdao 266033, China
| | - Jinming Jiang
- Faculty
of Environmental Engineering, The University
of Kitakyushu, 1-1 Hibikino Wakamatsu, Kitakyushu, Fukuoka 8080135, Japan
- Innovation
Institute for Sustainable Maritime Architecture Research and Technology
(iSMART), Qingdao University of Technology, Qingdao 266033, China
| | - Koji Takasu
- Faculty
of Environmental Engineering, The University
of Kitakyushu, 1-1 Hibikino Wakamatsu, Kitakyushu, Fukuoka 8080135, Japan
- Innovation
Institute for Sustainable Maritime Architecture Research and Technology
(iSMART), Qingdao University of Technology, Qingdao 266033, China
| | - Jian Wan
- Innovation
Institute for Sustainable Maritime Architecture Research and Technology
(iSMART), Qingdao University of Technology, Qingdao 266033, China
| | - Weijun Gao
- Faculty
of Environmental Engineering, The University
of Kitakyushu, 1-1 Hibikino Wakamatsu, Kitakyushu, Fukuoka 8080135, Japan
- Innovation
Institute for Sustainable Maritime Architecture Research and Technology
(iSMART), Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
2
|
Effect of Ultrasonic Pretreatment on Flocculation Filtration of Low-Rank Coal Slurry. Molecules 2022; 27:molecules27196460. [PMID: 36234998 PMCID: PMC9572005 DOI: 10.3390/molecules27196460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The efficient filtration of low-rank coal (LRC) slurry was significantly beneficial to the production process of wet coal beneficiation. However, relatively few studies have been reported on novel pretreatment methods for the efficient filtration of LRC slurry. In this paper, the mechanism of ultrasonic pretreatment to promote flocculation and filtration of slurry was studied. The hydrophobic variation of the slurry surface was measured by contact angle and XPS. The flocculation properties of slurry were characterized using zeta potential and FBRM. The effects of filter cake porosity and ultrasonic pretreatment on slurry filtration resistance were calculated by L-F NMR and Darcy's theory. The results showed that the ultrasonic pretreatment promoted the flocculation and filtration performance of LRC slurry, increased the filtration rate, and decreased the cake moisture content. Meanwhile, the contact angle of LRC increased significantly from 50.1° to 67.8° after ultrasonic pretreatment, and the surface tension of the filtrate decreased from 69.5 to 53.31 mN/m. Ultrasonic pretreatment reduced the absolute value of the zeta potential of coal slurry from 24.8 to 21.0 mV, and the average chord length of flocs increased from 5-10 μm to 25-30 μm, thus weakening the electrostatic repulsion between coals to promote floc formation. In addition, the pore tests and filtration theory calculations showed that the ultrasonic pretreatment significantly improved the permeability of the filter cake to water and reduced the resistance to slurry during filtration. In particular, the mesopore porosity increased by 9.18%, and the permeability increased by 2.937 × 108 m2. Therefore, this contributed to the reduction of slurry filtration resistance. This research provides an efficient method for promoting the efficient filtration of slurry.
Collapse
|
3
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
4
|
Pooja G, Kumar PS, Indraganti S. Recent advancements in the removal/recovery of toxic metals from aquatic system using flotation techniques. CHEMOSPHERE 2022; 287:132231. [PMID: 34826923 DOI: 10.1016/j.chemosphere.2021.132231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The paramount cause of water scarcity is pollution, which is becoming a massive issue since the last century. Besides, it is evident that water pollution is the main cause of emerging contaminants that are left untreated from industries, can cause serious threats to humans and biota as well. One of the best ways in remediating pollutants and finding a way for generating useable water is to use this contaminated water after the necessary treatment. Heavy metals are of major concern in treatment because of their toxicity, non-biodegradability, carcinogenicity, and they can cause inevitable damages even at low concentrations. In this review article, available different flotation techniques are discussed to address this issue. Flotation tends to be one of the promising techniques that have shown a high scope because of its high produce, low sludge formation, and ease of operation. From the several pieces of literature, it can be inferred that the flotation process can be conducted in one step, and that does not need any expensive materials. Further, this paper deliberates the versatility of each process in disclosing its advantages, limitations, further scope of research and fills the loopholes in the process for better effectiveness. Overall, flotation is a highly probable as well as effective treatment technology to eradicate noxious pollutants present in wastewater and thus helps to compromise environmental and social sustainability.
Collapse
Affiliation(s)
- G Pooja
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Sravya Indraganti
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
5
|
Chang L, Cao Y, Peng W, Miao Y, Su S, Fan G, Huang Y, Li C, Song X. Highly efficient and selective recovery of Cu(II) from wastewater via ion flotation with amidoxime functionalized graphene oxide as nano collector. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Miao Y, Peng W, Cao Y, Chang L, Fan G, Yu F. Facile preparation of sulfhydryl modified montmorillonite nanosheets hydrogel and its enhancement for Pb(II) adsorption. CHEMOSPHERE 2021; 280:130727. [PMID: 33964761 DOI: 10.1016/j.chemosphere.2021.130727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In the work, sulfhydryl functionalized montmorillonite nanosheets based hydrogel balls were firstly synthesized for Pb(II) adsorption, and then characterized by scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), surface area analyzer (BET), thermogravimetry (TG), and zeta potential. Effects of initial solution pH, adsorbent dosage, contact time, temperature on Pb(II) adsorption of the resulting hydrogel balls were investigated systematically. The experimental results showed that the increase amount of sulfhydryl functionalized montmorillonite nanosheets (MMTNs-SH) maintained the hydrogel balls a better porous structure and bigger specific surface area, endowing it a bigger adsorption capacity. The adsorption process was fitted well with pseudo-second-order kinetics model and Freundlich model, and more than 97% of Pb(II) could be removed under the optimum conditions. Moreover, hydrogel spheres have a certain cycle performance. In addition, the interactions between Pb(Ⅱ) ions and the oxygen atoms in the hydroxyl groups and the sulfur atoms in the sulfhydryl groups, and the ion exchange in MMTNs-SH dominated the adsorption.
Collapse
Affiliation(s)
- Yiheng Miao
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Weijun Peng
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; National and Local Joint Engineering Research Center for Green Mineral Metallurgy and Processing, Zhengzhou, Henan, 450001, PR China; Provincial and Ministerial Joint Innovation Center for Resource Materials, Zhengzhou, Henan, 450001, PR China.
| | - Yijun Cao
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; National and Local Joint Engineering Research Center for Green Mineral Metallurgy and Processing, Zhengzhou, Henan, 450001, PR China; Provincial and Ministerial Joint Innovation Center for Resource Materials, Zhengzhou, Henan, 450001, PR China.
| | - Luping Chang
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Guixia Fan
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Futao Yu
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Analytical & Testing Center, Sichuan Bureau of Geology & Mineral Resources, Chengdu, 610081, PR China
| |
Collapse
|
7
|
Mohanta YK, Biswas K, Rauta PR, Mishra AK, De D, Hashem A, Al-Arjani ABF, Alqarawi AA, Abd-Allah EF, Mahanta S, Mohanta TK. Development of Graphene Oxide Nanosheets as Potential Biomaterials in Cancer Therapeutics: An In-Vitro Study Against Breast Cancer Cell Line. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02046-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Ge W, Ma Q, Wang W, Jia F, Song S. Synthesis of three-dimensional reduced graphene oxide aerogels as electrode material for supercapacitor application. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|