1
|
Chen F, Zhou Z, Yang N, Jiang Q, Zhang X, Zhang H, Zheng Y, Li W, Lei B. Carbon dots based cascading nanozymes mitigate phytotoxicity in lettuces under imidacloprid stress. Food Chem 2025; 464:141926. [PMID: 39520885 DOI: 10.1016/j.foodchem.2024.141926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Improper pesticide use induces oxidative stress and disrupts detoxification systems in plants. We synthesized CDs with cascading nanozyme activities to mitigate phytotoxicity in lettuces under imidacloprid (IMI) stress. CDs exhibit superoxide dismutase-like (SOD-like) and peroxidase-like (POD-like) activities. Surface modifications and analysis of CDs, the SOD-like activity relies on the -NH2, -COOH, and -OH groups for binding superoxide anions (O2•-), while POD-like activity depends on -COOH and CO groups, also, CO group provides π-system and the electron-deficient structure for electron transfer. Practically, under IMI stress, CDs strengthen multiple defense systems in lettuces, reducing levels of reactive oxygen toxicity (O2•-, H2O2, and MDA, by 26.77 %, 48.52 %, and 13.10 %, respectively). Meanwhile, CDs upregulate detoxification gene expression, resulting in a 42.74 % reduction in IMI residue in lettuces. Moreover, the acceptable daily intake of IMI in lettuces treated with CDs was less than 18.0 % of the reference dose, even at high-concentration IMI.
Collapse
Affiliation(s)
- Fengqiong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China; College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Ziyan Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China; College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Na Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Qin Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu 610218, China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, PR China.
| |
Collapse
|
2
|
Fouad MR, Abdel-Raheem SAA. An overview on the fate and behavior of imidacloprid in agricultural environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61345-61355. [PMID: 39419870 DOI: 10.1007/s11356-024-35178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
This review provides an overview on the fate and behavior of imidacloprid, a neonicotinoid insecticide, in agricultural environments. The study focuses on four key aspects: adsorption and leaching of imidacloprid in soil, degradation and hydrolysis of imidacloprid in soil and water, uptake and persistence of imidacloprid in plants, and volatilization of imidacloprid to the atmosphere. The review presents the latest findings from research on each of these topics. While imidacloprid is highly effective at controlling pests, it is also known to persist in the environment, posing risks to non-target organisms such as bees, birds, and aquatic life. Moreover, there is increasing concern about its potential to accumulate in the soil and water systems, which may have long-term effects on the ecosystem. The review suggests that better understanding of the behavior and fate of imidacloprid in agricultural environments is essential for developing effective strategies to minimize its environmental impact.
Collapse
Affiliation(s)
- Mohamed R Fouad
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Aflaton St.El-Shatby, Alexandria, 21545, Egypt.
| | | |
Collapse
|
3
|
Zhuang L, Wu X, Lyu D, Wang M, Zhou R, Song J, Rong Y. Application of pesticide application measures to reduce residue based on the metabolic transfer law of imidacloprid in banana leaves and soil. CHEMOSPHERE 2023; 344:140290. [PMID: 37758084 DOI: 10.1016/j.chemosphere.2023.140290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
An investigation of the metabolism and transfer of imidacloprid (IMI) in banana plants and soil was performed using high-resolution mass spectrometry. Results indicated the presence of eight IMI metabolites in soil and leaves that resulted from hydroxylation of the imidazolidine ring, the reduction and loss of nitro groups, and oxidative cleavage of methylene bridges. Six metabolites, including 4/5-hydroxy IMI (4/5-hydroxy), IMI olefin (olefin), and 6-chloronicotinic acid (6-CNA), were detected in the fruits following leaf treatment, while only three were detected after soil treatment. Quantitative analysis showed that the total amount of imidacloprid and its metabolites transferred from leaves to fruits was higher than that transferred from soil to fruits. Therefore, leaf transfer was considered the main means by which IMI and its metabolites transferred to banana fruits. We found that adjuvants tank-mixed with IMI could reduce the total concentration of pesticide transfer from leaves to fruits, especially reducing the amount of metabolites transformed from the reduction and loss of nitro groups and oxidative cleavage of methylene bridges, thus reducing the pesticide residue in fruits and achieving the purpose of reducing the safety risk.
Collapse
Affiliation(s)
- Lvyun Zhuang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China; College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaopeng Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China.
| | - Daizhu Lyu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571100, China.
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China.
| | - Ruohao Zhou
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571100, China.
| | - Jia Song
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruit and Vegetable Products, Haikou 571100, China.
| | - Yu Rong
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China.
| |
Collapse
|
4
|
Wu Y, Zhou L, Kang L, Cheng H, Wei X, Pan C. Suspect screening strategy for pesticide application history based on characteristics of trace metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120557. [PMID: 36328280 DOI: 10.1016/j.envpol.2022.120557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Pesticides are widely used to protect crops but can also threaten public health as they can remain in the environment for a long time. Additionally, some transformation products (TPs) of unknown toxicity, stability, or bioaccumulation properties can further be formed from the hydrolysis, photolysis and biodegradation of pesticides. The identification and quantification of those TPs can be challenging for environmental regulation and risk assessment due to a limited understanding about them. In this study, a suspect screening strategy for pesticide application history was developed and then used to organic products (tea). Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) was used to screen and identify the TPs in crops and their toxicity was subsequently predicted with the open-source software (ECOSAR and admetSAR). Finally, the SIRIUS software was applied and 142 TPs from 20 pesticides were identified in tea plants based on the fragmentation-degradation relationship. Of these, standards (level 1) and 53 were considered as tentatively identified (levels 2a and 2b). Some TPs were also found to be present in tea plants and soil after 65 days, thus indicating higher persistency or stability than parent pesticides. While others from diafenthiuron and neonicotinoids had higher predicted toxicity of daphnid, and demonstrated positive for honeybee toxicity. Suspect screening is a powerful tool to screen pesticide TPs on the complex matrix of crops. Such screening can provide potential evidence of pesticide application, especially in cases of illegal practices in organic farming.
Collapse
Affiliation(s)
- Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Yan P, Zou Z, Li X, Zhang L, Zhang L, Fu J, Wenyan H. Biochar changed the distribution of imidacloprid in a plant-soil-groundwater system. CHEMOSPHERE 2022; 307:136213. [PMID: 36037941 DOI: 10.1016/j.chemosphere.2022.136213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The use of biochar has increased, as its physicochemical properties reduce the adverse effects of pesticides. However, few studies have comprehensively investigated the effects of biochar on the distribution of pesticides in a plant-soil-groundwater system. In this study, a biochar produced from rice straw at 550 °C was chosen, and column experiments with five rated of biochar application (application rates = 0.0, 1.0, 2.0, 3.0, and 4.0% w/w for B0-B4, respectively) were conducted to investigate the capacity of biochar to immobilize imidacloprid (IMI) in soil, thereby decreasing its uptake by plants and leaching from soil into groundwater. Our results showed that IMI in plants, leached from soil, and detected in soil accounted for 3.78, 1.76, and 36.4% of the total IMI input, respectively, and the biochar treatments dramatically decreased the IMI distribution to 0.57, 0.11, and 13.4%, respectively. By contrast, the percentage of undetected IMI increased from 58.1% in the B0 treatment to an average of 86.0% in the biochar treatments. Biochar treatments increased IMI immobilization in soil, which could be related to the increased soil carbon content, surface area, cation exchange capacity. This study indicates that biochar with characters of high surface area and porosity can stabilize IMI and reduce its potential to harm plants and groundwater.
Collapse
Affiliation(s)
- Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhenhao Zou
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Liping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Han Wenyan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| |
Collapse
|
6
|
Zhai R, Zhang K, Chen G, Liu G, Huang X, Gao M, Zhou J, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. Residue, Dissipation Pattern, and Dietary Risk Assessment of Imidacloprid in Chinese Chives. Front Nutr 2022; 9:846333. [PMID: 35284432 PMCID: PMC8905493 DOI: 10.3389/fnut.2022.846333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The demand for Chinese chives is growing as they are also rich in vitamins, fiber, and sulfur nutrients. Chinese chives should be sprayed with imidacloprid to control pests and diseases to safeguard their yield and to meet the demands of East Asian consumers for Chinese chives. Overspraying of imidacloprid can lead to residues in Chinese chives, posing a severe risk to human health. To reduce the harmful effects of imidacloprid residues on humans, we investigated the imidacloprid dissipation pattern and the final residue on Chinese chives using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Good linearity (R2= 0.9988), accuracy (expressed as recovery % of 78.34–91.17%), precision [expressed as relative SDs (RSDs) of 0.48–6.43%], and sensitivity [a limit of quantification (LOQ) ≤ 8.07 × 104 mg/kg] were achieved. The dissipation dynamics were consistent with the first-order kinetics, with a half-life of 2.92 days. The final residual levels on Chinese chives were 0.00923–0.166 mg/kg, which is lower than the maximum residue limits (MRLs) of 1 mg/kg for imidacloprid on Chinese chives. A risk assessment index of <1 indicates that Chinese chives are safe for consumption.
Collapse
Affiliation(s)
- Rongqi Zhai
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaige Zhang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Ge Chen
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhou
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanguo Zhang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maojun Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Institute of Vegetables and Flowers, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
- Donghui Xu
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Gao Y, Sinkkonen A, Li H, Oleszczuk P. Advances in agro-environmental organic contamination: An introduction to the Special Issue. CHEMOSPHERE 2022; 287:132071. [PMID: 34500329 DOI: 10.1016/j.chemosphere.2021.132071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies, Itäinen Pitkäkatu 4, Turku, Finland
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| |
Collapse
|
8
|
Zhou J, Dong C, An W, Zhao Q, Zhang Y, Li Z, Jiao B. Dissipation of imidacloprid and its metabolites in Chinese prickly ash (Zanthoxylum) and their dietary risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112719. [PMID: 34478976 DOI: 10.1016/j.ecoenv.2021.112719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Dissipation of imidacloprid (IMI) and its metabolites (urea, olefin, 5-hydroxy, guanidine, 6-chloronicotinic acid) in Chinese prickly ash (CPA) was investigated using QuEChERS combined with UPLC-MS/MS. Good linearity (r2 ≥0.9963), accuracy (recoveries of 71.8-104.3%), precision (relative standard deviations of 0.9-9.4%), and sensitivity (limit of quantification ≤0.05 mg kg-1) were obtained. After application of IMI at dosage of 467 mg a.i. L-1 for three times with interval of 7 d, the dissipation dynamics of IMI in CPA followed first-order kinetics, with half-life of 6.48-7.29 d. IMI was the main compound in CPA, followed by urea and guanidine with small amounts of olefin, 5-hydroxy, and 6-chloronicotinic acid. The terminal residues of total IMI and its metabolites at PHI of 14-21 d were 0.16-7.80 mg kg-1 in fresh CPA and 0.41-10.44 mg kg-1 in dried CPA, with the median processing factor of 3.62. Risk assessment showed the acute (RQa) and chronic dietary risk quotients (RQc) of IMI in CPA were 0.020-0.083% and 0.052-0.334%, respectively. Based on the dietary structures of different genders and ages of Chinese people, the whole dietary risk assessment indicated that RQc was less than 100% for the general population except for 2- to 7-year-old children (RQc of 109.9%), implying the long-term risks of IMI were acceptable to common consumers except for children.
Collapse
Affiliation(s)
- Jie Zhou
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Chao Dong
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Wenjing An
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Zhixia Li
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China
| | - Bining Jiao
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Laboratory of Citrus Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China; Quality Supervision and Testing Center for Citrus and Seedling, Ministry of Agriculture and Rural Affairs, Chongqing 400712, China.
| |
Collapse
|
9
|
Huynh K, Corkidi L, Leonard E, Palmer C, Bethke J, Tharayil N. Dissipation and transformation of the diamide insecticide cyantraniliprole in ornamental snapdragon (Antirrhinum majus). CHEMOSPHERE 2021; 281:130753. [PMID: 34015651 DOI: 10.1016/j.chemosphere.2021.130753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Dissipation and transformation of cyantraniliprole, a new diamide class of insecticides, were investigated under greenhouse conditions, using snapdragon (Antirrhinum majus) as the model plant. Dissipation of cyantraniliprole in treated leaves was found to be dependent upon application methods (foliar spray versus soil drench) and doses (high versus low dose), with the parent insecticide being the major residue at various sampling points. A high-dose foliar application resulted in pesticide residue of 6.7-23.8 μg/g foliar fresh weight over 8 weeks of treatments, while in soil drench treatment the residue varied from 0.8 to 1.4 μg/g. However, the residue contents were similar between the two application methods at a low application dose. The transformation pathways of cyantraniliprole were primarily intramolecular rearrangements, with IN-J9Z38 being the major metabolite across treatments. Several other metabolites were also identified, some of which were unique to the application methods. Out of total 26 metabolites tentatively identified in this study, 10 metabolites were unique to foliar application, while six metabolites were unique to soil drench. In addition to plant-mediated biotransformation, photodegradation of the parent compound was identified as a potential mechanism in foliar application.
Collapse
Affiliation(s)
- Khang Huynh
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, United States
| | - Lea Corkidi
- University of California Cooperative Extension, San Diego, CA, 92123, United States
| | - Elizabeth Leonard
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, United States
| | - Cristi Palmer
- Rutgers, The State University of New Jersey, IR-4 Project, New Brunswick, NJ, 08901, United States
| | - James Bethke
- University of California Cooperative Extension, San Diego, CA, 92123, United States
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, United States.
| |
Collapse
|
10
|
Touzout N, Mehallah H, Moralent R, Moulay M, Nemmiche S. Phytotoxic evaluation of neonicotinoid imidacloprid and cadmium alone and in combination on tomato (Solanum lycopersicum L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1126-1137. [PMID: 34085160 DOI: 10.1007/s10646-021-02421-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids and heavy metals pollution exist simultaneously in agro ecosystem. However, little is known about their combined ecotoxicological effects on non-target crop plants. We have selected imidacloprid (IMI) and cadmium (Cd), applied alone and in combination, to evaluate their effect on growth, physiological and biochemical parameters of tomato. Results showed that the single application of contaminants (IMI and/or Cd) adversely affected both the growth and chlorophyll pigment, and Cd alone application was more phytotoxic than IMI. However, their combined action aggravated the inhibitory effect and indicate a synergistic effect, but it exerted antagonistic effects on chlorophyll pigment inhibition compared with IMI and Cd alone treatments. Both chemicals increased hydrogen peroxide level and generated lipid peroxidation, and the co-contamination exacerbates oxidative stress by their synergistic effect. Those results implicate that disturbance of cellular redox status is the plausible mechanism for IMI and Cd induced toxicity. In conclusion, the single or combined IMI and Cd cause negative effects on tomatoes.
Collapse
Affiliation(s)
- Nabil Touzout
- Faculty of Nature and Life Sciences, Department of Agronomy, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Hafidha Mehallah
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Radia Moralent
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Mohammed Moulay
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
- Stem Cells Research Group, KFMRC, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saïd Nemmiche
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria.
| |
Collapse
|
11
|
Li W, Zhang S, Wang H, Wang Y, Guo W, Yu Z, Ye Q. Translocation and residue of 14C-benzene kresoxim-methyl in mature cucumber (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144426. [PMID: 33421785 DOI: 10.1016/j.scitotenv.2020.144426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The broad application of strobilurin fungicide led to pathogen resistance, and toxic effects have been reported for several species. Benzene kresoxim-methyl (BKM) is a novel strobilurin fungicide mainly used to control the cucumber powdery mildew. However, information about the fate of BKM in agrofood systems and related human exposure is limited. In this study, greenhouse experiments were conducted to investigate the distribution, translocation, and residual of the 10% suspension concentrate (SC) commercial BKM formulations on mature cucumber plants using 14C tracer technology. After foliage and fruit application, 25.84% of the applied 14C-labeled BKM can be absorbed into mature cucumber plants at 21 days after treatment. The absorbed BKM transferred throughout the plant acropetally and basipetally, although over 81.13% of absorbed BKM remained in the labeled leaves. In the edible parts, 14.35% of the absorbed BKM remained in the pericarp of labeled fruits, only 0.027 mg kg-1 accumulated in the sarcocarp. The concentration of BKM in newborn fruits was 0.005 mg kg-1, indicating low dietary exposure. These findings develop a better understanding of the fate of BKM in the cucumber plants, provide guidance in the rational use of BKM and can be incorporated into food and environmental assessments of BKM.
Collapse
Affiliation(s)
- Wei Li
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yichen Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Guo
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|