1
|
Cheng X, Wang S, Zhang X, Iqbal MS, Yang Z, Xi Y, Xiang X. Accelerated aging behavior of degradable and non-degradable microplastics via advanced oxidation and their adsorption characteristics towards tetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116864. [PMID: 39137460 DOI: 10.1016/j.ecoenv.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The increasing global utilization of biodegradable plastics due to stringent regulations on traditional plastics has caused a significant rise in microplastic (MPs) pollution in aquatic ecosystems from biodegradable products. However, the environmental behavior of biodegradable MPs remains inadequately elucidated. This study explored the aging processes of polylactic acid (PLA) and polystyrene (PS) under a heat-activated potassium persulfate (K2S2O8) system, as well as their adsorption characteristics towards tetracycline (TCs). In comparison to PS, the surface structure of PLA experienced more pronounced changes over aging, exhibiting evident pits, cracks, and fragmentation. The carbonyl index (CI) and oxygen/carbon ratio (O/C) of PS displayed exponential growth over time, whereas the values for PLA showed linear and exponential increases, respectively. The adsorption capacity of TCs by PS and PLA aged for 6 days increased from 0.312 mg‧g-1 and 0.457 mg‧g-1for original PS and PLA, respectively, to 0.372 mg‧g-1 and 0.649 mg‧g-1. Meanwhile, the adsorption rate (k2 values) for TCs decreased by 42.03 % for PS and 79.64 % for PLA compared to their initial values. The findings indicated that biodegradable PLA-MPs may exhibit higher tetracycline carrying capacities than PS, potentially increasing environmental and organismal risks, particularly in view of aging effects.
Collapse
Affiliation(s)
- Xinfeng Cheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xin Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | | | - Zhifu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilong Xi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - XianLing Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
2
|
Kiani Kori A, Ramavandi B, Mahmoodi SMM, Javanmardi F. Magnetization and ZIF-67 modification of Aspergillus flavus biomass for tetracycline removal from aqueous solutions: A stable and efficient composite. ENVIRONMENTAL RESEARCH 2024; 252:118931. [PMID: 38615794 DOI: 10.1016/j.envres.2024.118931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
In the present work, the biomass of Aspergillus flavus (AF) was modified using magnetic nanoparticles MnFe2O4 and metal-organic framework of ZIF-67, and its ability to remove tetracycline antibiotic (TCH) was investigated. With the help of physicochemical tests, AF biomass modification with ZIF-67 and MnFe2O4 magnetic nanoparticles was confirmed. Based on the BET value, AF-MnFe2O4-ZIF-67 (139.83 m2/g) has a higher surface value than AF (0.786 m2/g) and AF/MnFe2O4 (17.504 m2/g). Also, the magnetic saturation value revealed that the modified biomass can be isolated from the treated solution using a simple magnetic field. Maximum TCH elimination (99.04%) using AF-MnFe2O4-ZIF-67 was obtained at pH 7, adsorber mass of 1 g/L, adsorption time of 40 min, and TCH content of 10 mg/L. The thermodynamic study indicated that the TCH abatement using the desired composite is spontaneous and exothermic. The experimental results showed that the adsorption process is compatible with the pseudo-second-order kinetic and Freundlich model. The maximum adsorption capacity for AF, AF-MnFe2O4, and AF-MnFe2O4-ZIF-67 was quantified to be 9.75 mg/g, 25.59 mg/g, and 43.87 mg/g, respectively. The reusability of the desired adsorbers was examined in up to 8 steps. The outcomes showed that the adsorbers can be used several times in TCH elimination. The provided composite can remove TCH from hospital wastewater, so it can be suggested for use in water and wastewater treatment works.
Collapse
Affiliation(s)
- Akram Kiani Kori
- Department of Microbiology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | | | - Farahnaz Javanmardi
- Department of Microbiology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
3
|
Liu X, Tang Y, Wang X, Sarwar MT, Zhao X, Liao J, Zhang J, Yang H. Efficient Adsorbent Derived from Phytolith-Rich Ore for Removal of Tetracycline in Wastewater. ACS OMEGA 2024; 9:8287-8296. [PMID: 38405464 PMCID: PMC10883018 DOI: 10.1021/acsomega.3c09049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
In recent decades, the tetracycline (TC) concentration in aquatic ecosystems has gradually increased, leading to water pollution problems. Various mineral adsorbents for the removal of tetracyclines have garnered considerable attention. However, efficient adsorbents suitable for use in a wide pH range environment have rarely been reported. Herein, a phytolith-rich adsorbent (PRADS) was prepared by a simple one-step alkali-activated pyrolysis treatment using phytolith as a raw material for effectively removing TC. PRADS, benefiting from its porous structure, which consists of acid- and alkali-resistant, fast-adsorbing macroporous silica and mesoporous carbon, is highly desirable for efficient TC removal from wastewater. The results indicate that PRADS exhibited excellent adsorption performance and stability for TC over a wide pH range of 2.0-12.0 under the coexistence of competing ions, which could be attributed to the fact that PRADS has a porous structure and contains abundant oxygen-containing functional groups and a large number of bonding sites. The adsorption mechanisms of PRADS for TC were mainly attributed to pore filling, hydrogen bonding, π-π electron-donor-acceptor, and electrostatic interactions. This work could offer a novel preparation strategy for the effective adsorption of pollutants by new functionalized phytolith adsorbents.
Collapse
Affiliation(s)
- Xi Liu
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
- Department
of Natural Resources of Jiangxi Province, Jiangxi Province Natural Resources Interests and Reserve Security
Center, Nanchang 330025, China
| | - Yili Tang
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Xianguang Wang
- Department
of Natural Resources of Jiangxi Province, Jiangxi Mineral Resources Guarantee Service Center, Nanchang 330025, China
| | - Muhammad Tariq Sarwar
- Engineering
Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory
of Advanced Mineral Materials, China University
of Geosciences, Wuhan 430074, China
- Faculty of
Materials Science and Chemistry, China University
of Geosciences, Wuhan 430074, China
| | - Xiaoguang Zhao
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Juan Liao
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Jun Zhang
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Huaming Yang
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
- Engineering
Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory
of Advanced Mineral Materials, China University
of Geosciences, Wuhan 430074, China
- Faculty of
Materials Science and Chemistry, China University
of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Kanmaz N, Buğdaycı M, Demirçivi P. Solvent-free mechanochemical synthesis of TiO2-ethyl cellulose biocomposite for adsorption of tetracycline and organic dyes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Tang J, Wang Y, Peng Y, Sun Z, Liu R, Ran F. Waste Adsorbent-Derived Interconnected Hierarchical Attapulgite@Carbon/NiCo Layered Double Hydroxide Nanocomposites for Advanced Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2739-2750. [PMID: 36762610 DOI: 10.1021/acs.langmuir.2c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The attapulgite@carbon/NiCo layered double hydroxide nanocomposites based on waste adsorbents are manufactured via simple and eco-friendly calcination and hydrothermal methods, by which they would be considerable electrode materials for advanced supercapacitors. To achieve sustainable development, the spent tetracycline-loaded attapulgite can act as a cost-effective available carbon source as well as a matrix material for carbon species and NiCo layered double hydroxide simultaneously. A controlled amount of attapulgite@carbon could be used to regulate the electrochemical properties of nanocomposites. The generated electrodes possess superior electrochemical properties with a specific capacitance of 2013.8 F g-1 at 0.5 A g-1, a retention rate of 87.7% at 5 A g-1, and a cyclic stability of 64.9% for 4000 cycles at 5 A g-1. Thus, the asymmetric supercapacitor device assembled with attapulgite@carbon/NiCo layered double hydroxide nanocomposites||active carbon shows a maximum capacitance of 231.3 F g-1 at 0.5 A g-1, with a preeminent energy density of 82.2 Wh kg-1 when its power density is 4318 W kg-1. This approach would contribute to the development of supercapacitors in an efficient and effective manner, as well as provide a feasible strategy for solving tetracycline pollution and recycling waste adsorbents to achieve sustainable development.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Zhijiang Sun
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
6
|
Wang T, Meng Z, Liu L, Li W. Insights into the interaction between cadmium/tetracycline and nano-TiO 2 on a zeolite surface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18522-18534. [PMID: 36215003 DOI: 10.1007/s11356-022-23482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles interact with organic-inorganic pollutants in the environment, and these interactions affect their environmental behavior. The mechanisms of the interaction between TiO2 and organic-inorganic pollutants on the surface of clay minerals are still unclear. In this work, isotherm adsorption was studied to explore the interactions between Cd2+/tetracycline (TC), TiO2 nanoparticles, and a zeolite (Zeo). SEM, FT-IR, and XPS were also used to reveal the interaction mechanism between organic-inorganic pollutants and TiO2 on their stability and mobility in the environment. Compared to the single systems, the adsorption of Cd2+ and TiO2 in the Cd + TiO2 composite system decreased by 3.43% and 9.90%, respectively; the TC and TiO2 adsorption in the TC + TiO2 composite system decreased by 14.39% and 45.47%, respectively. The antagonism between Cd2+ and TiO2 was due to Cd2+ and TiO2 competing for the electrostatic attraction (-OH) and hydrogen bonding sites (Si-O), and TC and TiO2 competing for the hydrogen bonding sites (-OH and C = O) on Zeo. The presence of TiO2 will increase the mobility of Cd2+ and TC on a clay surface, and this effect is more significant for organic pollutants TC. Compared with Cd2+, TC has a more significant boosting impact on the TiO2 mobility.
Collapse
Affiliation(s)
- Teng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China.
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China.
| | - Zhaofu Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
- Key Lab of Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, People's Republic of China
| | - Lin Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Wenbin Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, People's Republic of China
| |
Collapse
|
7
|
Chen J, Lian J, Fang Z. A comparative study on adsorption and catalytic degradation of tetracycline by five magnetic mineral functional materials prepared from steel pickling waste liquor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78926-78941. [PMID: 35699883 DOI: 10.1007/s11356-022-21183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Palygorskite (Pal), bentonite (Bent), sepiolite (Sep), zeolite (Zeol), and kaolin (Kaol) were used with steel pickling waste liquor to synthesize magnetic palygorskite (Pal@Fe3O4), magnetic bentonite (Bent@Fe3O4), magnetic sepiolite (Sep@Fe3O4), magnetic zeolite (Zeol@Fe3O4), and magnetic kaolin (Kaol@Fe3O4), for adsorption and catalytic degradation of tetracycline (TC), respectively. Through the study of adsorption kinetics and adsorption isotherms, the maximum adsorption capacity of Pal@Fe3O4 to TC was 149.439 mg/g, which was 1.239 times, 2.260 times, 3.161 times, and 3.448 times of Bent@Fe3O4, Zeol@Fe3O4, Kaol@Fe3O4, and Sep@Fe3O4, respectively. The kinetic study of tetracycline degradation demonstrated that the maximum reaction rate constant of Bent@Fe3O4/H2O2 system was K(obs) = 2.12 × 10-2 min-1, which was close to that of Pal@Fe3O4/H2O2, Kaol@Fe3O4/H2O2 system, and was 2.000 times, 2.356 times, 2.650 times, and 4.711 times of Fe3O4/H2O2, Zeol@Fe3O4/H2O2, Sep@Fe3O4/H2O2, and H2O2 system, respectively. The results showed that Pal@Fe3O4 and Bent@Fe3O4 were more advantageous in the treatment of wastewater containing tetracycline, and efficient reuse of exhausted magnetic minerals and deep mineralization of organic pollutants were achieved by constructing an advanced oxidation system. The BET, VSM, SEM, XPS, XRD, and FTIR were used to characterize the five clay minerals before and after magnetic modification. It was speculated that the surface structure - OH groups of clay minerals might be significant factors influencing the adsorption performance of magnetic minerals on TC, and reduction ability of clay minerals to Fe3+ importantly affected the catalytic performance of magnetic minerals. The specific surface area and morphological structure of clay minerals both affected the adsorption and catalytic degradation of TC by the five magnetic minerals.
Collapse
Affiliation(s)
- Junyi Chen
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jintao Lian
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Xie C, Xu L, Gang R, Zhang L, Ye Q, Xu Z. Enhanced Tetracycline Adsorption of MoS 2 via Defect Introduction Under Microwave Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11683-11690. [PMID: 36099553 DOI: 10.1021/acs.langmuir.2c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defect engineering is a promising method for improving the performance of MoS2 in various fields. In this study, sulfur-defect-enriched MoS2 (SD-MoS2) nanosheets were fabricated via a facile microwave-hydrothermal strategy in 10 min for tetracycline (TC) adsorption applications. The introduction of sulfur defects in MoS2 induced more exposed unsaturated sulfur atoms at the edge, enhancing the interaction between the adsorbent and antibiotic and improving the adsorption activity of the antibiotic. Density functional theory calculations further revealed that sulfur defects in MoS2 could alter the electronic structure and exhibited low TC adsorption energy of -2.09 eV. This work provides a new method for fabricating MoS2 nanosheets and other transition metal dichalcogenide-based adsorbents with enhanced antibiotic removal performance and a comprehensive understanding of antibiotic removal mechanisms in SD-MoS2.
Collapse
Affiliation(s)
- Cheng Xie
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, P. R. China
| | - Lei Xu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, P. R. China
| | - Ruiqi Gang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, P. R. China
| | - Libo Zhang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, P. R. China
| | - Qianjun Ye
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, P. R. China
| | - Zhangbiao Xu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, P. R. China
| |
Collapse
|
9
|
Başkan G, Açıkel Ü, Levent M. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
High-temperature sulfurized synthesis of MnxCd1−xS/S-kaolin composites for efficient solar-light driven H2 evolution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Cao M, Liu X, Wang W, Gao M, Yang H. Bifunctional two-dimensional copper-aluminum modified filter paper composite for efficient tetracycline removal: Synergy of adsorption and reusability by degradation. CHEMOSPHERE 2022; 287:132031. [PMID: 34492408 DOI: 10.1016/j.chemosphere.2021.132031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 05/05/2023]
Abstract
Herein, bifunctional two-dimensional copper-aluminum modified filter paper composite (2D-Cu/Al-C) was successfully prepared by simple calcination and showed ultrahigh adsorption performance and degradation potential. The adsorption removal of TC on 2D-Cu/Al-C all exceeded 92.2% under solution conditions of 10-200 mg/L TC, 100 mg/L 2D-Cu/Al-C, pH 8 and 298 K. The pseudo-second-order kinetic and Langmuir models better fitted the kinetic and isotherm data via spontaneous and exothermic process, and the maximum capacity of the 2D-Cu/Al-C was 2391.78 mg/g. Additionally, 2D-Cu/Al-C showed desired specific adsorption for TC (TC: 98.7%, norfloxacin: 5.8%, sulfamethoxazole: 2.1%, and ciprofloxacin: 1.8%) and it could effectively adsorbed TC even in the binary system (various coexisting ions or natural organic matter). After TC adsorbed on adsorbent was mineralized into CO2 and H2O by adding peroxydisulfate to generate high electrode potential radical in another limited systems, the 2D-Cu/Al-C still had ∼89.12% on TC removal (initial concentration of 50 mg/L) after five experimental cycles. Zeta potential, FT-IR and XPS results indicated that the multi-adsorption mechanism, including electrostatic interactions, complexation, and H-bonds, played a vital role in the fast and efficient adsorption process. Thus, the way of combining adsorption and regeneration via degradation are green, non-polluting strategy which are expected to be applied for water purification in future environmental remediation.
Collapse
Affiliation(s)
- Mengbo Cao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Xun Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Ming Gao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Hongbing Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China.
| |
Collapse
|
12
|
Application of Magnetic Composites in Removal of Tetracycline through Adsorption and Advanced Oxidation Processes (AOPs): A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Water pollution induced by the tetracycline (TC) has caused global increasing attention owing to its extensive use, environmental persistence, and potential harm for human health. Adsorption and advanced oxidation processes (AOPs) have been promising techniques for TC removal due to ideal effectiveness and efficiency. Magnetic composites (MCs) which exploit the combined advantages of nano scale, alternative sources, easy preparation, and separation from wastewater are widely used for catalysis and adsorption. Herein, we intensively reviewed the available literature in order to provide comprehensive insight into the applications and mechanisms of MCs for removal of TC by adsorption and AOPs. The synthesis methods of MCs, the TC adsorption, and removal mechanisms are fully discussed. MCs serve as efficient adsorbents and photocatalysts with superior performance of photocatalytic performance in TC degradation. In addition, the TC can be effectively decomposed by the Fenton-based and SO4•− mediated oxidation under catalysis of the reported MCs with excellent catalytic performance. Based on the existing literature, we further discuss the challenge and future perspectives in MCs-based adsorption and AOPs in removing TC.
Collapse
|
13
|
Shen Q, Xu MH, Wu T, Pan GX, Tang PS. Adsorption behavior of tetracycline on carboxymethyl starch grafted magnetic bentonite. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01839-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|