1
|
Liu Y, Zhang X, Zheng J, He J, Lü C. Reductive dissolution of As-bearing iron oxides: Mediating mechanism of fulvic acid and dissimilated iron reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173443. [PMID: 38782281 DOI: 10.1016/j.scitotenv.2024.173443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Fulvic acid (FA) and iron oxides often play regulating roles in the geochemical behavior and ecological risk of arsenic (As) in terrestrial ecosystems. FA can act as electron shuttles to facilitate the reductive dissolution of As-bearing iron (hydr)oxides. However, the influence of FA from different sources on the sequential conversion of Fe/As in As-bearing iron oxides under biotic and abiotic conditions remains unclear. In this work, we exposed prepared As-bearing iron oxides to FAs derived from lignite (FAL) and plant peat (FAP) under anaerobic conditions, tracked the fate of Fe and As in the aqueous phase, and investigated the reduction transformation of Fe(III)/As(V) with or without the presence of Shewanella oneidensis MR-1. The results showed that the reduction efficiency of Fe(III)/As(V) was increased by MR-1, through its metabolic activity and using FAs as electron shuttles. The reduction of Fe(III)/As(V) was closely associated with goethite being more conducive to Fe/As reduction compared to hematite. It is determined that functional groups such as hydroxy, carboxy, aromatic, aldehyde, ketone and aliphatic groups are the primary electron donors. Their reductive capacities rank in the following sequence: hydroxy> carboxy, aromatic, aldehyde, ketone> aliphatic group. Notably, our findings suggest that in the biotic reduction, Fe significantly reduction precedes As reduction, thereby influencing the latter's reduction process across all incubation systems. This work provides empirical support for understanding iron's role in modulating the geochemical cycling of As and is of significant importance for assessing the release risk of arsenic in natural environments.
Collapse
Affiliation(s)
- Yangzheng Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Xin Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Forest Ecosystem National Observation and Research Station of Greater Khingan Mountains in Inner Mongolia, Genhe 022350, China.
| | - Jinli Zheng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Jiang He
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China.
| |
Collapse
|
2
|
Ma L, Zhao R, Li J, Yang Q, Zou K. Release characteristics and risk assessment of volatile sulfur compounds in municipal wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123946. [PMID: 38643932 DOI: 10.1016/j.envpol.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/15/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
In recent years, the malodorous gases generated by sewage treatment plants have gradually received widespread attention due to their sensory stimulation and health hazards. The emission concentration, sensory evaluation and health risk assessment of volatile sulfur compounds (VSCs) were all explored in two municipal wastewater treatment plants (WWTPs) with oxidation ditch and anaerobic/oxic treatment process, respectively. The VSCs concentration showed the highest amount in the primary treatment unit in both the two WWTPs (73.3% in Plant A and 93.0% in Plant B), while the H2S took the main role in the composition of VSCs. However, H2S took a larger percentage in Plant A (84.5% ∼ 87.0%) rather than Plant B (61.2% ∼ 83.5%), which may be due to the different operating conditions and sludge properties in different treatment process. Besides, H2S also gained the first rank in the sensory evaluation and health risk assessment, which may cause considerable sensory irritation and health risk to workers and surrounding residents. Furthermore, the influencing factor analyses of VSCs emission showed that the temperature of water and air, ORP of sludge made the greatest effect on VSCs release. This study provides theoretical and data support for the research of VSCs emission control in WWTPs.
Collapse
Affiliation(s)
- Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Odor Pollution Control in Ministry of Ecology and Environment of the People's Republic of China, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Ruhan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Kehua Zou
- Key Laboratory of Odor Pollution Control in Ministry of Ecology and Environment of the People's Republic of China, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| |
Collapse
|
3
|
Xie X, Yan L, Sun S, Pi K, Shi J, Wang Y. Arsenic biogeochemical cycling association with basin-scale dynamics of microbial functionality and organic matter molecular composition. WATER RESEARCH 2024; 251:121117. [PMID: 38219691 DOI: 10.1016/j.watres.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Geogenic arsenic (As)-contaminated groundwater is a sustaining global health concern that is tightly constrained by multiple interrelated biogeochemical processes. However, a complete spectrum of the biogeochemical network of high-As groundwater remains to be established, concurrently neglecting systematic zonation of groundwater biogeochemistry on the regional scale. We uncovered the geomicrobial interaction network governing As biogeochemical pathways by merging in-field hydrogeochemical monitoring, metagenomic analyses, and ultrahigh resolution mass spectrometry (FT-ICR MS) characterization of dissolved organic matter. In oxidizing to weakly reducing environments, the nitrate-reduction and sulfate-reduction encoding genes (narGHI, sat) inhibited the dissolution of As-bearing iron minerals, leading to lower As levels in groundwater. In settings from weakly to moderately reducing, high abundances of sulfate-reduction and iron-transport encoding genes boosted iron mineral dissolution and consequent As release. As it evolved to strongly reducing stage, elevated abundance of methane cycle-related genes (fae, fwd, fmd) further enhanced As mobilization in part by triggering the formation of gaseous methylarsenic. During redox cycling of N, S, Fe, C and As in groundwater, As migration to groundwater and immobilization in mineral particles are geochemically constrained by basin-scale dynamics of microbial functionality and DOM molecular composition. The study constructs a theoretical model to summarize new perspectives on the biogeochemical network of As cycling.
Collapse
Affiliation(s)
- Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China.
| | - Lu Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Shige Sun
- Central Southern China Electric Power Design Institute Co, LTD. of China Power Engineering Consulting Group, Wuhan 430074, China
| | - Kunfu Pi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
4
|
Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment. WATER 2022. [DOI: 10.3390/w14060942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sulfate-reducing bacteria-mediated reduction process is considered to be an important mechanism affecting arsenic migration and transformation in anaerobic environments. To investigate the effect of sulfate-reducing bacteria in a high-arsenic aquifer on arsenic migration and transformation, the typical sulfate-reducing bacteria Desulfovibrio vulgaris was selected for micro-cosmic experiments to simulate a groundwater environment with or without sulfate amendment. The reduction of Fe(III) and As(V) by Desulfovibrio vulgaris was identified, and Fe(III) and As(V) were reduced in both sulfate-free and sulfate-containing systems. However, the addition of 1 mM sulfate significantly enhanced Fe(III) and As(V) reduction. Compared with no sulfate addition, 1 mM sulfate increased the reduction rates of Fe(III) and As(V) by 111.9% and 402.2%, respectively. The sulfate process mediated by Desulfovibrio vulgaris also remarkably promoted arsenic release in sediments. These results indicated that sulfate concentration should be considered when sulfate reduction is used as a remediation method for arsenic pollution in groundwater.
Collapse
|
5
|
Wang H, Cui S, Ma L, Wang Z, Wang H. Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112415. [PMID: 34171691 DOI: 10.1016/j.ecoenv.2021.112415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
In order to understand the mechanisms of arsenic (As) accumulation and detoxification in aquatic plants exposed to different As species, a hydroponic experiment was conducted and the three aquatic plants (Hydrilla verticillata, Pistia stratiotes and Eichhornia crassipes) were exposed to different concentrations of As(III), As(V) and dimethylarsinate (DMA) for 10 days. The biomass, the surface As adsorption and total As adsorption of three plants were determined. Furthermore, As speciation in the culture solution and plant body, as well as the arsenate reductase (AR) activities of roots and shoots, were also analyzed. The results showed that the surface As adsorption of plants was far less than total As absorption. Compared to As(V), the plants showed a lower DMA accumulation. P. stratiotes showed the highest accumulation of inorganic arsenic but E. crassipes showed the lowest at the same As treatment. E. crassipes showed a strong ability to accumulate DMA. Results from As speciation analysis in culture solution showed that As(III) was transformed to As(V) in all As(III) treatments, and the oxidation rates followed as the sequence of H. verticillata>P. stratiotes>E. crassipes>no plant. As(III) was the predominant species in both roots (39.4-88.3%) and shoots (39-86%) of As(III)-exposed plants. As(V) and As(III) were the predominant species in roots (37-94%) and shoots (31.1-85.6%) in As(V)-exposed plants, respectively. DMA was the predominant species in both roots (23.46-100%) and shoots (72.6-100%) in DMA-exposed plants. The As(III) contents and AR activities in the roots of P. stratiotes and in the shoots of H. verticillata were significantly increased when exposed to 1 mg·L-1 or 3 mg·L-1 As(V). Therefore, As accumulation mainly occurred via biological uptake rather than physicochemical adsorption, and AR played an important role in As detoxification in aquatic plants. In the case of As(V)-exposed plants, their As tolerance was attributed to the increase of AR activities.
Collapse
Affiliation(s)
- Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Suping Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Li Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Zhongzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| |
Collapse
|
6
|
Budzyńska S, Niedzielski P, Mleczek M. Time-dependent changes of arsenic and its selected forms in a hydroponic experiment with Quercus robur L. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124244. [PMID: 33082017 DOI: 10.1016/j.jhazmat.2020.124244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Mutual transformations of particular As forms are dynamic. Therefore hydroponic experiments need to account for this variation. For this reason, the aim of the study was to determine the time-dependent changes of Astotal and selected forms of this metalloid (As(III), As(V), DMA or the sum of other organic forms) in modified Knop's solution and organs (root, low and high stem) of 2-year-old Quercus robur L. seedlings within a 33-day long hydroponic experiment. The results indicate the varying speed of As uptake and transport to aerial plant parts. A decrease in contents of As forms in organs of seedlings exposed to individual As forms varied, which indicates simultaneous transformations of As forms both in Knop's solution and plant organs. The obtained results indicate the need to analyse the main forms of As both in the nutrient solution and plant organs to assess the actual effectiveness of As phytoextraction by plants. It is necessary because, as demonstrated in this work, the addition of a specific As form does not mean that the capacity of a given plant relative to this form specifically is assessed. Capsule: The form of arsenic added to the medium undergoes dynamic changes affecting the phytoextraction of this metalloid in Quercus robur L. organs.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Przemysław Niedzielski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|