1
|
Liu R, Xie H. The seed germination and seedling phytotoxicity of decabromodiphenyl ethane to tall fescue under citric acid amendment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:473. [PMID: 39400738 DOI: 10.1007/s10653-024-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has biological toxicity, persistence, long-range migration and bioaccumulation ability. However, there is currently little research on the phytotoxicity of DBDPE in plants. The perennial herbaceous plant tall fescue (Festuca elata Keng ex E. B. Alexeev) was selected as the model organism for use in seed germination experiments, and the phytotoxicity of DBDPE in the soil of tall fescue was studied. The results indicated that DBDPE had a significant effect on the germination and growth of tall fescue seedlings. Citric acid reduced the stress caused by DBDPE in plants, effectively alleviating the phytotoxicity of DBDPE in tall fescue. The root vitality and protein content significantly increased after the application of citric acid, increasing by 74.93-183.90%, 146.44-147.67%, respectively. The contents of proline and soluble sugars significantly decreased after the application of citric acid, decreasing by 45.18-59.69% and 23.03%, respectively (P < 0.05). There was no significant difference in superoxide dismutase (SOD) or peroxidase (POD) activity in tall fescue seedlings, and the catalase (CAT) activity and malondialdehyde (MDA) content were significantly lower after the application of citric acid, decreasing by 64.62-67.91% and 29.10-49.80%, respectively (P < 0.05). Tall fescue seedlings bioaccumulated DBDPE, with biological concentration factors (BCFs) ranging from 4.28 to 18.38 and transfer factors (TFs) ranging from 0.43 to 0.54. This study provides theoretical support for the study of the toxicity of DBDPE to plants and offers a research foundation for exploring the phytoremediation of DBDPE-contaminated soil by tall fescue.
Collapse
Affiliation(s)
- Ruiyuan Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Hui Xie
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
2
|
Touzout N, Bouchibane M, Tahraoui H, Mihoub A, Zhang J, Amrane A, Ahmad I, Danish S, Alahmadi TA, Ansari MJ. Silicon-mediated resilience: Unveiling the protective role against combined cypermethrin and hymexazol phytotoxicity in tomato seedlings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122370. [PMID: 39236605 DOI: 10.1016/j.jenvman.2024.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Insecticides and fungicides present potential threats to non-target crops, yet our comprehension of their combined phytotoxicity to plants is limited. Silicon (Si) has been acknowledged for its ability to induce crop tolerance to xenobiotic stresses. However, the specific role of Si in alleviating the cypermethrin (CYP) and hymexazol (HML) combined stress has not been thoroughly explored. This study aims to assess the effectiveness of Si in alleviating phytotoxic effects and elucidating the associated mechanisms of CYP and/or HML in tomato seedlings. The findings demonstrated that, compared to exposure to CYP or HML alone, the simultaneous exposure of CYP and HML significantly impeded seedling growth, resulting in more pronounced phytotoxic effects in tomato seedlings. Additionally, CYP and/or HML exposures diminished the content of photosynthetic pigments and induced oxidative stress in tomato seedlings. Pesticide exposure heightened the activity of both antioxidant and detoxification enzymes, increased proline and phenolic accumulation, and reduced thiols and ascorbate content in tomato seedlings. Applying Si (1 mM) to CYP- and/or HML-stressed seedlings alleviated pigment inhibition and oxidative damage by enhancing the activity of the pesticide metabolism system and secondary metabolism enzymes. Furthermore, Si stimulated the phenylpropanoid pathway by boosting phenylalanine ammonia-lyase activity, as confirmed by the increased total phenolic content. Interestingly, the application of Si enhanced the thiols profile, emphasizing its crucial role in pesticide detoxification in plants. In conclusion, these results suggest that externally applying Si significantly alleviates the physio-biochemical level in tomato seedlings exposed to a combination of pesticides, introducing innovative strategies for fostering a sustainable agroecosystem.
Collapse
Affiliation(s)
- Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria.
| | - Malika Bouchibane
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of MÉDÉA, ALGERIA, Nouveau Pôle Urbain, Médéa University, 26000, Médéa, Algeria
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan.
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, 60000, Punjab, Pakistan.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, India, 244001.
| |
Collapse
|
3
|
Jiang Z, Li Q, Peng F, Yu J. Biochar Loaded with a Bacterial Strain N33 Facilitates Pecan Seedling Growth and Shapes Rhizosphere Microbial Community. PLANTS (BASEL, SWITZERLAND) 2024; 13:1226. [PMID: 38732441 PMCID: PMC11085327 DOI: 10.3390/plants13091226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Biochar and beneficial microorganisms have been widely used in ecological agriculture. However, the impact of biochar loaded with microbes (BM) on plant growth remains to be understood. In this study, BM was produced by incubating pecan biochar with the bacterial strain N33, and the effects of BM on pecan growth and the microbial community in the rhizosphere were explored. BM application significantly enhanced the biomass and height of pecan plants. Meanwhile, BM treatment improved nutrient uptake in plants and significantly increased the chlorophyll, soluble sugars, and soluble proteins of plants. Furthermore, BM treatment improved the soil texture and environment. Finally, BM application substantially enhanced the diversity of soil fungi and bacteria as well as the relative abundances of the phyla Firmicutes and Chloroflexi, and families Bacillaceae and Paenibacillaceae, as shown by high-throughput sequencing. Together, this study clarified the growth-promotive effects of BM on pecan plants and suggested an alternative to synthetic fertilizers in their production.
Collapse
Affiliation(s)
- Zexuan Jiang
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China;
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China;
| | - Fangren Peng
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China;
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China;
| |
Collapse
|
4
|
Mo L, Fang L, Yao W, Nie J, Dai J, Liang Y, Qin L. LC-QTOF/MS-based non-targeted metabolomics to explore the toxic effects of di(2-ethylhexyl) phthalate (DEHP) on Brassica chinensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170817. [PMID: 38340818 DOI: 10.1016/j.scitotenv.2024.170817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known to pose health risks to humans upon exposure. Recognizing the toxic nature of DEHP, our study aimed to elucidate the response mechanisms in Brassica chinensis L. (Shanghai Qing) when subjected to varying concentrations of DEHP (2 mg kg-1, 20 mg kg-1, and 50 mg kg-1), particularly under tissue stress. The findings underscored the substantial impact of DEHP treatment on the growth of Brassica chinensis L., with increased DEHP concentration leading to a notable decrease in chlorophyll levels and alterations in the content of antioxidant enzyme activities, particularly superoxide dismutase (SOD) and peroxidase (POD). Moreover, elevated DEHP concentrations correlated with increased malondialdehyde (MDA) levels. Our analysis detected a total of 507 metabolites in Brassica chinensis L., with 331 in shoots and 176 in roots, following DEHP exposure. There was a significant difference in the number of metabolites in shoots and roots, with 79 and 64 identified, respectively (VIP > 1, p < 0.05). Metabolic pathway enrichment in Brassica chinensis L. shoots revealed significant perturbations in valine, leucine, and isoleucine biosynthesis and degradation, aminoacyl-tRNA, and glucosinolate biosynthesis. In the roots of Brassica chinensis L., varying DEHP levels exerted a substantial impact on the biosynthesis of zeatin, ubiquinone terpenoids, propane, piperidine, and pyridine alkaloids, as well as glutathione metabolic pathways. Notably, DEHP's influence was more pronounced in the roots than in the shoots, with higher DEHP concentrations affecting a greater number of metabolic pathways. This experimental study provides valuable insights into the molecular mechanisms underlying DEHP-induced stress in Brassica chinensis L., with potential implications for human health and food safety.
Collapse
Affiliation(s)
- Lingyun Mo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China.
| | - Liusen Fang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Weihao Yao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Junfeng Dai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - YanPeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
5
|
Xie Z, Men C, Yuan X, Miao S, Sun Q, Hu J, Zhang Y, Liu Y, Zuo J. Naturally aged polylactic acid microplastics stunted pakchoi (Brassica rapa subsp. chinensis) growth with cadmium in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132318. [PMID: 37672995 DOI: 10.1016/j.jhazmat.2023.132318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Biodegradable microplastics (BMPs) and cadmium (Cd) are posing threats to agro-systems especially to plants and current studies mostly used virgin BMPs to explore their ecological effects. However, effects of naturally aged BMPs and their combined effects with Cd on pakchoi are yet to be unraveled. Therefore, this study incubated naturally aged polylactic acid (PLA) MPs through soil aging process and investigated the single and combined effects of Cd and PLA MPs (virgin and aged) on pakchoi (Brassica rapa subsp. chinensis) morphology, antioxidant systems and soil microbial activities. Our results found that after being deposited in soil for six months, aged PLA (PLAa) MPs formed with a fractured surface, demonstrating more detrimental effects on pakchoi than virgin ones. PLA/PLAa MPs and Cd stunted pakchoi growth, caused oxidative stress and altered the biophysical environment in soil, separately. Moreover, co-existence of PLA/PLAa MPs and Cd caused greater damages to pakchoi than applied alone. The co-presence of PLAa MPs and Cd inhibited pakchoi biomass accumulation rate by 92.2 % compared with the no-addition group. The results unraveled here emphasized BMPs, especially aged BMPs, could trigger negative effects on agro-systems with heavy metals. These findings will give reference to future holistic assessments of BMPs' ecological effects.
Collapse
Affiliation(s)
- Zhenwen Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Chengdu Xingrong Environment Co., Ltd, Chengdu 610041, China; Chengdu Drainage Co., Ltd, Chengdu 610011, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Yuan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Sun Miao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanyi Sun
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiamin Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuxin Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Shi A, Hu Y, Zhang X, Zhou D, Xu J, Rensing C, Zhang L, Xing S, Ni W, Yang W. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121559. [PMID: 37023890 DOI: 10.1016/j.envpol.2023.121559] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Biochar and metal-tolerant bacteria have been widely used in the remediation of heavy metal contaminated soil. However, the synergistic effect of biochar-functional microbes on phytoextraction by hyperaccumulators remains unclear. In this study, the heavy metal-tolerant strain Burkholderia contaminans ZCC was selected and loaded on biochar to produce biochar-resistant bacterial material (BM), and the effects of BM on Cd/Zn phytoextraction by Sedum alfredii Hance and rhizospheric microbial community were explored. The results showed that, BM application significantly enhanced the Cd and Zn accumulation of S. alfredii by 230.13% and 381.27%, respectively. Meanwhile, BM alleviated metal toxicity of S. alfredii by reducing oxidative damage and increasing chlorophyll and antioxidant enzyme activity. High-throughput sequencing revealed that BM significantly improved soil bacterial and fungal diversity, and increased the abundance of genera with plant growth promoting and metal solubilizing functions such as Gemmatimonas, Dyella and Pseudarthrobacter. Co-occurrence network analysis showed that BM significantly increased the complexity of the rhizospheric bacterial and fungal network. Structural equation model analysis revealed that soil chemistry property, enzyme activity and microbial diversity contributed directly or indirectly to Cd and Zn extraction by S. alfredii. Overall, our results suggested that biochar- B. contaminans ZCC was able to enhance the growth and Cd/Zn accumulation by S. alfredii. This study enhanced our understanding on the hyperaccumulator-biochar-functional microbe interactions, and provided a feasible strategy for promoting the phytoextraction efficiency of heavy metal contaminated soils.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Hu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Yang H, Li M, Zhang C, Li N, Yao X, Li X, Li F, Wang J. Ecotoxicological and biochemical effects of di(2-ethylhexyl)phthalate on wheat (Jimai 22, Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130816. [PMID: 36680896 DOI: 10.1016/j.jhazmat.2023.130816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Di(2-ethylhexyl)phthalate esters (DEHP) has attracted widespread attention due to its ecotoxicological effects on organisms. In this study, wheat seedlings were exposed to DEHP- contaminated soil with 4 concentration gradients (0, 1, 10, and 100 mg kg-1, respectively) for 30 days. The growth index, physiological index, oxidative damage system, and gene expression of wheat seedlings were comprehensively measured and analyzed. The results revealed that DEHP could reduce the germination rate of wheat. Only the 100 mg kg-1 treatment group significantly inhibited root length, but no effect on plant height. At the biochemical level, photosynthetic pigments of wheat seedlings were promoted first and then inhibited, while the soluble sugar content presented a trend of "inhibition - activation - inhibition". The antioxidant enzymes (SOD and POD) presented an approximate parabolic trend, while it was opposite for CAT. Whereas the corresponding antioxidant enzyme genes were up-regulated, and the Hsp70 heat-shock protein gene was down-regulated. Finally, integrated biological response index (IBR) analysis showed that the DEHP toxicity to wheat seedlings was dose dependent. Molecular docking indicated that DEHP could stably bind to GBSS and GST by intermolecular force. Overall, this study provided constructive insights for a comprehensive assessment of the toxicity risk of DEHP to wheat.
Collapse
Affiliation(s)
- Huiyan Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an 271000, PR China
| | - Cui Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Fang Li
- College of Economics and Management, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
8
|
He C, Zhou J, Yang C, Song Z, He J, Huang Z, Deng Y, Wang J, Xiong Y, Dang Z. Accumulation, transportation, and distribution of tetracycline and cadmium in rice. J Environ Sci (China) 2023; 126:58-69. [PMID: 36503784 DOI: 10.1016/j.jes.2022.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 06/17/2023]
Abstract
Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth.
Collapse
Affiliation(s)
- Chunfeng He
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jini Zhou
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Zhiyi Song
- Department of Environmental Sciences, The State University of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Guangdong Institute of Ecological Environment and Soil, Guangzhou 510650, China
| | - Junheng He
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yurong Deng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinling Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Xiong
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
9
|
Zhang W, Wang J, Zhu L, Wang J, Mao S, Yan X, Wen S, Wang L, Dong Z, Kim YM. New insights into the effects of antibiotics and copper on microbial community diversity and carbon source utilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01491-1. [PMID: 36939996 DOI: 10.1007/s10653-023-01491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Residual antibiotics (ABs) and heavy metals (HMs) are continuously released from soil, reflecting their intensive use and contamination of water and soil, posing an environmental problem of great concern. Relatively few studies exist of the functional diversity of soil microorganisms under the combined action of ABs and HMs. To address this deficiency, BIOLOG ECO microplates and the Integrated Biological Responses version 2 (IBRv2) method were used to comprehensively explore the effects of single and combined actions of copper (Cu) and enrofloxacin (ENR), oxytetracycline (OTC), and sulfadimidine (SM2) on the soil microbial community. The results showed that the high concentration (0.80 mmol/kg) compound group had a significant effect on average well color development (AWCD) and OTC showed a dose-response relationship. The results of IBRv2 analysis showed that the single treatment group of ENR or SM2 had a significant effect on soil microbial communities, and the IBRv2 of E1 was 5.432. Microbes under ENR, SM2, and Cu stress had more types of available carbon sources, and all treatment groups were significantly more enriched with microorganisms having D-mannitol and L-asparagine as carbon sources. This study confirms that the combined effects of ABs and HMs can inhibit or promote the function of soil microbial communities. In addition, this paper will provide new insights into IBRv2 as an effective method to evaluate the impacts of contaminants on soil health.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Xiaojing Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shengfang Wen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Lanjun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zikun Dong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
10
|
Shan G, Li W, Bao S, Hu X, Liu J, Zhu L, Tan W. Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:192-198. [PMID: 36379168 DOI: 10.1016/j.wasman.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal carbonization (HTC) has been recognized as a promising sewage sludge (SS) treatment technology for effective pathogen elimination, bioenergy recovery, organic contaminant destruction and volume reduction. However, the solid product (hydrochar) of SS after HTC as fuel has the problems of high ash content, high nitrogen content and low calorific value. The aqueous phase (AP) produced is still considered a burden and has become a bottleneck in the development of HTC. In this study, co-HTC of SS with spent mushroom substrate (SMS) is conducted, and the fuel properties of hydrochar and the quality of the AP as a liquid fertilizer are investigated. In comparison with hydrochar of single SS, the energy yield and higher heating value of the hydrochar from co-HTC were significantly increased by 12.1-44.8 % and 33.2-137.8 %, respectively, reaching their maximum of 72.75 % and14.98 MJ/kg, respectively. Co-HTC can improve safe handling, storage and transportation, and combustion performance of hydrochar. Furthermore, the AP of co-HTC could significantly increase the biomass of pakchoi, which was 140.9 % and 90.7 % of AP from single SS and Hoagland nutrition solution (represents commercial fertilizer), respectively. The AP of co-HTC as fertilizer can recover 62.03-64.65 % nitrogen from SS and SMS. These findings suggest that co-HTC of SMS with SS is a promising technology for the conversion SS into renewable resource products for fuels and N-rich liquid fertilizer while also significantly improving fuel and fertilizer quality.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Xinhao Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Yao X, Zhang J, Wang C, Wang Q, Li X, Zhang D, Wang J, Zhu L, Wang J. Toxicity of dibutyl phthalate to pakchoi (Brassica campestris L.): Evaluation through different levels of biological organization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157943. [PMID: 35952877 DOI: 10.1016/j.scitotenv.2022.157943] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Dibutyl phthalate (DBP) is a typical persistent organic pollutant with a high load in the agricultural soils of vegetable crops. Currently, studies on the toxicity of DBP in vegetable crops are limited. Therefore, in this study, pakchoi (Brassica campestris L.), a typical vegetable crop, was used to evaluate the toxic effects of DBP. Pakchoi was exposed to DBP for 24 d at three doses (2, 20, and 200 mg/kg), and the phenotypic, biochemical, and molecular indicators were determined. The results revealed that DBP could reduce the emergence of pakchoi and inhibit plant height, root length, fresh weight, and leaf area. At the biochemical level, DBP exposure could reduce the content of three typical photosynthetic pigments (chlorophyll a and b and carotenoids). The effects of DBP exposure on the quality of pakchoi were primarily through reduced soluble sugar and increased proline contents. In addition, O2·- and H2O2 levels increased after DBP stress, and the corresponding antioxidant enzymes (SOD, POD, and CAT) were activated to resist oxidative damage. The dose- and time-dependent toxicities of DBP to pakchoi were demonstrated using an integrated biological response index. Finally, the molecular-level results on Day 24 showed that the three antioxidant enzyme genes (sod, pod, and cat) were significantly downregulated, and the antioxidant enzyme genes were more sensitive biomarkers than the enzyme activities. However, the expression level of enzyme genes was opposite to that of enzyme activity (SOD and POD); thus, DBP might directly interact with these enzymes. Molecular docking showed that DBP could stably bind near the SOD/POD active center through intermolecular interaction forces. This study provides essential information on the risk of DBP toxicity to vegetable crops.
Collapse
Affiliation(s)
- Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Can Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Dexin Zhang
- Bureau of Agriculture and Rural Affairs of Changle, Weifang, Shandong 262400, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
12
|
Zhao M, Li J, Zhou S, Rao G, Xu D. Effects of tetracycline on the secondary metabolites and nutritional value of oilseed rape (Brassica napus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81222-81233. [PMID: 35731441 DOI: 10.1007/s11356-022-21267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolism, which helps a plant cope with external stress, is sensitive to environmental changes and plays a prominent role in maintaining plant health. However, few studies of the effects of tetracycline on the relationships between secondary metabolism and plant stress responses have been performed. Here, secondary metabolism, nutritional value, and oxidative stress responses in oilseed rape (Brassica napus L.) exposed to tetracycline for 14 days were investigated. Tetracycline inhibited growth and biomass accumulation and decreased the chlorophyll content. The sinapine, phenol, and flavonoid contents were 118.46%, 99.67%, and 93.07% higher, respectively, but the carotenoid content was 76.47% lower in plants exposed to 8 mg/L tetracycline than the control plants. Tetracycline affected the nutritional value of oilseed rape. Tetracycline decreased the dietary fiber, soluble sugar contents, and microelement (Fe, Mn, and Zn) contents. The antioxidant system also responded strongly to tetracycline. The catalase and peroxidase activities were increased and the superoxide dismutase activity was decreased by tetracycline. Tetracycline caused oxidative damage and secondary metabolite disturbances and adversely affected oilseed rape growth and quality. The results provide a new perspective on the effects of tetracycline on plants in relation to secondary metabolites and improve our understanding involved in the toxicity of tetracycline.
Collapse
Affiliation(s)
- Mengting Zhao
- College of Environment and Resources, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jun Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shanshan Zhou
- College of Environment and Resources, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Guiwei Rao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
13
|
Unraveling Cadmium Toxicity in Trifolium repens L. Seedling: Insight into Regulatory Mechanisms Using Comparative Transcriptomics Combined with Physiological Analyses. Int J Mol Sci 2022; 23:ijms23094612. [PMID: 35563002 PMCID: PMC9105629 DOI: 10.3390/ijms23094612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Trifolium repens (T. repens) can accumulate significant amounts of heavy metal ions, and has strong adaptability to wide environmental conditions, and relatively large biomass, which is considered a potential plant for phytoremediation. However, the molecular mechanisms of T. repens involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of T. repens exposed to a high-level CdCl2 by investigating the physiological and transcriptomic analyses. The results suggested that T. repens seedlings had a high degree of tolerance to Cd treatment. The roots accumulated higher Cd concentration than leaves and were mainly distributed in the cell wall. The content of MDA, soluble protein, the relative electrolyte leakage, and three antioxidant enzymes (POD, SOD, and APX) was increased with the Cd treatment time increasing, but the CAT enzymes contents were decreased in roots. Furthermore, the transcriptome analysis demonstrated that the differentially expressed genes (DEGs) mainly enriched in the glutathione (GSH) metabolism pathway and the phenylpropanoid biosynthesis in the roots. Overexpressed genes in the lignin biosynthesis in the roots might improve Cd accumulation in cell walls. Moreover, the DEGs were also enriched in photosynthesis in the leaves, transferase activity, oxidoreductase activity, and ABA signal transduction, which might also play roles in reducing Cd toxicity in the plants. All the above, clearly suggest that T. repens employ several different mechanisms to protect itself against Cd stress, while the cell wall biosynthesis and GSH metabolism could be considered the most important specific mechanisms for Cd retention in the roots of T. repens.
Collapse
|
14
|
Xiong JQ, Zhao CY, Qin JY, Cui P, Zhong QL, Ru S. Metabolic perturbations of Lolium perenne L. by enrofloxacin: Bioaccumulation and multistage defense system. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127893. [PMID: 34865897 DOI: 10.1016/j.jhazmat.2021.127893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Plants are readily exposed to the antibiotics residues in reclaimed water indicating an urgent need to comprehensively analyze their ecotoxicological effects and fate of these emerging contaminants. Here, we unraveled the dissemination of enrofloxacin (ENR) in a pasture grass, Lolium perenne L., and identified multistage defense systems as its adaptation mechanism. Uptaken concentrations of ENR ranged from 1.28 to 246.60 µg g-1 with bioconcentration factors (BCF) upto 15.13, and translocation factors (TF) upto 0.332. The antioxidant enzymatic activities such as superoxide dismutase, peroxidase, and catalase were increased by upto 115%. Further transcriptomics demonstrated that differentially expressed genes (DEGs) involved in glycolysis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and glutathione metabolism were significantly up-regulated by 1.56-5.93, 3-7 and 1.04-6.42 times, respectively; whilst, the DEGs in nitrogen and sulfur metabolism pathways were significantly up-regulated by 1.06-5.64 and 2.64-3.54 folds. These processes can supply energy, signaling molecules, and antioxidants for detoxification of ENR in ryegrass. Such results provide understanding into fasting grass adaptability to antibiotics by enhancing the key protective pathways under organic pollutant stresses in environments.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China.
| | - Chen-Yu Zhao
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Jing-Yu Qin
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Pengfei Cui
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Qiu-Lian Zhong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266100, Shandong, China.
| |
Collapse
|
15
|
Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041949. [PMID: 35206138 PMCID: PMC8872130 DOI: 10.3390/ijerph19041949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022]
Abstract
Duckweed (Spirodela polyrrhiza) has the potential to treat anaerobically digested swine wastewater (ADSW), but the effects of antibiotics and heavy metals in ADSW on the treatment performance and mechanism of Spirodela polyrrhiza are not clear. Herein, an experiment was conducted to investigate the effects of sulfamethazine (SMZ) and cupric ion on NH4+-N and total phosphorus (TP) removal from synthetic ADSW. The activity of superoxide dismutase (SOD) and the contents of photosynthetic pigments, vitamin E, and proteins in duckweed were also evaluated. Under the stress of SMZ, duckweed showed excellent removal efficiency of nutrients, and the results of SOD activity and photosynthetic pigments content indicated that duckweed had good tolerance to SMZ. Interestingly, a combined application of SMZ and cupric ion would inhibit the nutrient removal by duckweed, but significantly increased the contents of photosynthetic pigments, proteins, and vitamin E. In addition, the consequence indicated that high value-added protein and vitamin E products could be produced and harvested by cultivating duckweed in ADSW. Furthermore, possible degradation pathways of SMZ in the duckweed system were proposed based on the analysis with LC-MS/MS. This research proposed a novel view for using duckweed system to remove nutrients from ADSW and produce value-added products under the stress of SMZ and cupric ion.
Collapse
|
16
|
Jia H, Wu D, Yu Y, Han S, Sun L, Li M. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). CHEMOSPHERE 2022; 288:132576. [PMID: 34656617 DOI: 10.1016/j.chemosphere.2021.132576] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 05/23/2023]
Abstract
Microplastics have become a global environmental problem due to the ubiquitous existence. The impacts of microplastics on heavy metals behaviors in aquatic environment are widely investigated, however, the impacts of microplastics on bioaccumulation of heavy metals in vegetables in terrestrial environment are seldom investigated. Herein, batch experiments were carried out, the microplastics (0.001%, 0.01%, 0.1%) and heavy metal (50, 100 mg/kg Cu2+ or 25, 50 mg/kg Pb2+) were single or combined spiked into soil to cultivate rapes (Brassica napus L.) in greenhouse. Copper and lead contents of rapes in MP0.1+Cu100 and MP0.1+Pb50 treatments reached 38.9 mg/kg and 9.4 mg/kg, which were significantly (p < 0.05) higher than those of Cu100 (35.3 mg/kg) and Pb50 (8.7 mg/kg) treatments, respectively. Results showed that microplastics in soil would facilitate heavy metals entering rape plants. In addition, contents of total chlorophyll, soluble sugar, vitamin C, malondialdehyde contents, activities of superoxide dismutase and guaiacol peroxidase, as well as related gene expression were analyzed to investigate the toxic effects of these pollutants (microplastics, Cu, and Pb) to rape plants. Malondialdehyde contents of rapes in MP0.1+Cu50, MP0.1+Cu100, MP0.1+Pb25, and MP0.1+Pb50 treatments reached 0.102 mmol/mg Protein, 0.123 mmol/mg Protein, 0.101 mmol/mg Protein, and 0.119 mmol/mg Protein, which were 1.42, 1.37, 1.46, and 1.45 times of those in Cu50, Cu100, Pb25, and Pb50 treatments, respectively. The changes of malondialdehyde content, activities of superoxide dismutase and guaiacol peroxidase, as well as contents of sugar and vitamin C indicated that microplastics in soil would bring severer damage and deteriorate quality of rape plants. The data in this study indicated that microplastics would increase the bioaccumulation of heavy metals in vegetables and damage to vegetables.
Collapse
Affiliation(s)
- Hao Jia
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Di Wu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Long Sun
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
17
|
Tang T, Kang W, Shen M, Chen L, Zhao X, Wang Y, Xu S, Ming A, Feng T, Deng H, Zheng S. Accumulation Mechanism and Risk Assessment of Artemisia selengensis Seedling In Vitro with the Hydroponic Culture under Cadmium Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031183. [PMID: 35162204 PMCID: PMC8834386 DOI: 10.3390/ijerph19031183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Artemisia selengensis is a perennial herb of the Compositae with therapeutic and economic value in China. The cadmium (Cd) accumulation mechanism and healthy risk evaluation of A. selengensis were investigated in this study. Tissue culture seedlings were obtained by plant tissue culture in vitro, and the effect of Cd stress (Cd concentration of 0.5, 1, 5, 10, 25, 50 and 100 μM) on A. selengensis was studied under hydroponic conditions. The results showed that low-Cd (0.5–1 μM) stress caused a rare effect on the growth of A. selengensis seedlings, which regularly grew below the 10 μM Cd treatment concentration. The biomass growth rate of the 0.5, 1, and 5 μM treatment groups reached 105.8%, 96.6%, and 84.8% after 40 days of cultivation, respectively. In addition, when the concentration of Cd was greater than 10 μM, the plant growth was obviously inhibited, i.e., chlorosis of leaves, blackening roots, destroyed cell ultrastructure, and increased malondialdehyde (MDA) content. The root could be the main location of metal uptake, 57.8–70.8% of the Cd was concentrated in the root after 40 days of cultivation. Furthermore, the root cell wall was involved in the fixation of 49–71% Cd by subcellular extraction, and the involvement of the participating functional groups of the cell wall, such as -COOH, -OH, and -NH2, in metal uptake was assessed by FTIR analysis. Target hazard quotient (THQ) was used to assess the health risk of A. selengensis, and it was found that the edible part had no health risk only under low-Cd stress (0.5 to 1 μM) and short-term treatment (less than 20 days).
Collapse
Affiliation(s)
- Tao Tang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Wei Kang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
- College of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: ; Tel.: +86-15072077233
| | - Mi Shen
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Lin Chen
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Xude Zhao
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Yongkui Wang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shunwen Xu
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Anhuai Ming
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Tao Feng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
| | - Haiyan Deng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shuqi Zheng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| |
Collapse
|
18
|
Cheng M, Zhou Q, Wang L, Jiao Y, Liu Y, Tan L, Zhu H, Nagawa S, Wei H, Yang Z, Yang Q, Huang X. A new mechanism by which environmental hazardous substances enhance their toxicities to plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126802. [PMID: 34396977 DOI: 10.1016/j.jhazmat.2021.126802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of hazardous substances enhances their toxicities to plants, but its mechanism is still unclear due to the unknown cytochemical behavior of hazardous substance in plants. In this study, by using interdisciplinary methods, we observed the cytochemical behavior of coexisting hazardous substances {terbium [Tb(III)], benzo(a)pyrene (BaP) and cadmium [Cd(II)] in environments} in plants and thus identified a new mechanism by which coexisting hazardous substances in environments enhance their toxicities to plants. First, Tb(III) at environmental exposure level (1.70 × 10-10 g/L) breaks the inert rule of clathrin-mediated endocytosis (CME) in leaf cells. Specifically, Tb(III) binds to its receptor [FASCICLIN-like arabinogalactan protein 17 (FLA17)] on the plasma membrane of leaf cells and then docks to an intracellular adaptor protein [adaptor protein 2 (AP2)] to form ternary complex [Tb(III)-FLA17-AP2], which finally initiates CME pathway in leaf cells. Second, coexisting Tb(III), BaP and Cd(II) in environments are simultaneously transported into leaf cells via Tb(III)-initiated CME pathway, leading to the accumulation of them in leaf cells. Finally, these accumulated hazardous substances simultaneously poison plant leaf cells. These results provide theoretical and experimental bases for elucidating the mechanisms of hazardous substances in environments poisoning plants, evaluating their risks, and protecting ecosystems.
Collapse
Affiliation(s)
- Mengzhu Cheng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, China 214122
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, China 214122
| | - Yunlong Jiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Yongqiang Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Li Tan
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China 201602
| | - Hong Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China 201602
| | - Shingo Nagawa
- Fujian Agriculture and Forestry University-University of California, Riverside Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China 350002
| | - Haiyan Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Zhenbiao Yang
- Fujian Agriculture and Forestry University-University of California, Riverside Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China 350002; Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Qing Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023.
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023.
| |
Collapse
|
19
|
Lv Z, Li X, Wang Y, Hu X, An J. Responses of soil microbial community to combination pollution of galaxolide and cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56247-56256. [PMID: 34050515 DOI: 10.1007/s11356-021-14520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The goal of this work was to assess the effect of combined pollution of galaxolide (HHCB) and cadmium (Cd) on soil microbial community as measured by phospholipid fatty acid (PLFA). Combined effects of HHCB and Cd were different from that of HHCB alone. The total microbial biomass increased with the concentrations of HHCB in both the single and combined treatments. Comparing to the single HHCB treatments, addition of Cd significantly reduced both the total microbial biomass and Gram-positive/Gram-negative bacteria (G+/G-) ratio, while increased the bacteria/fungi (B/F) ratio in the combined pollution treatments. The principal component analysis (PCA) revealed that the microbial community structure was significantly altered by the combined effects of HHCB and Cd. Results of redundancy analysis (RDA) showed that there was complex relationship between pollutant and microbial community and the combined effects was higher than the single pollution. Taken together, these results suggest that combined pollution of HHCB and Cd caused a greater influence on the soil microbial community than the single pollution of HHCB.
Collapse
Affiliation(s)
- Ze Lv
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Xingguo Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Yujia Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Xiaomin Hu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
20
|
Touzout N, Mehallah H, Moralent R, Moulay M, Nemmiche S. Phytotoxic evaluation of neonicotinoid imidacloprid and cadmium alone and in combination on tomato (Solanum lycopersicum L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1126-1137. [PMID: 34085160 DOI: 10.1007/s10646-021-02421-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids and heavy metals pollution exist simultaneously in agro ecosystem. However, little is known about their combined ecotoxicological effects on non-target crop plants. We have selected imidacloprid (IMI) and cadmium (Cd), applied alone and in combination, to evaluate their effect on growth, physiological and biochemical parameters of tomato. Results showed that the single application of contaminants (IMI and/or Cd) adversely affected both the growth and chlorophyll pigment, and Cd alone application was more phytotoxic than IMI. However, their combined action aggravated the inhibitory effect and indicate a synergistic effect, but it exerted antagonistic effects on chlorophyll pigment inhibition compared with IMI and Cd alone treatments. Both chemicals increased hydrogen peroxide level and generated lipid peroxidation, and the co-contamination exacerbates oxidative stress by their synergistic effect. Those results implicate that disturbance of cellular redox status is the plausible mechanism for IMI and Cd induced toxicity. In conclusion, the single or combined IMI and Cd cause negative effects on tomatoes.
Collapse
Affiliation(s)
- Nabil Touzout
- Faculty of Nature and Life Sciences, Department of Agronomy, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Hafidha Mehallah
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Radia Moralent
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Mohammed Moulay
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
- Stem Cells Research Group, KFMRC, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saïd Nemmiche
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria.
| |
Collapse
|