1
|
Periyasamy S, Farissi S, Rayaroth MP, Kannan M, Nambi IM, Liu D. Electrochemical oxidation of Florfenicol in aqueous solution with mixed metal oxide electrode: Operational factors, reaction by-products and toxicity evaluation. CHEMOSPHERE 2024; 362:142665. [PMID: 38906192 DOI: 10.1016/j.chemosphere.2024.142665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Veterinary antibiotics have become an emerging pollutant in water and wastewater sources due to excess usage, toxicity and resistance to traditional water and wastewater treatment. The present study explored the degradation of a model antibiotic- Florfenicol (FF) using electrochemical oxidation (EO) with Ti-RuO2/IrO2 anode. The anode material was characterized using SEM-EDS studies expressing stable structure and optimal interaction of the neighboring metal oxides with each other. The EDS results showed the presence of Ru, Ir, Ti, O and C elements with 6.44%, 2.57%, 9.61%, 52.74% and 28.64% atomic weight percentages, respectively. Optimization studies revealed pH 5, 30 mA cm-2 current density and 0.05 M Na2SO4 for 5 mg L-1 FF achieved 90% TOC removal within 360 min treatment time. The degradation followed pseudo-first order kinetics. LC-Q-TOF-MS studies revealed six predominant byproducts illustrating hydroxylation, deflourination, and dechlorination to be the major degradation mechanisms during the electrochemical oxidation of FF. Ion chromatography studies revealed an increase in Cl-, F- and NO3- ions as treatment time progressed with Cl- decreasing after the initial phase of the treatment. Toxicity studies using Zebrafish (Danio rerio) embryo showed the treated sample to be toxic inducing developmental disorders such as pericardial edema, yolk sac edema, spinal curvature and tail malformation at 96 h post fertilization (hpf). Compared to control, delayed hatching and coagulation were observed in treated embryos. Overall, this study sets the stage for understanding the effect of mixed metal oxide (MMO) anodes on the degradation of veterinary antibiotic-polluted water and wastewater sources using electrochemical oxidation.
Collapse
Affiliation(s)
- Selvendiran Periyasamy
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Salman Farissi
- Department of Environmental Science, Central University of Kerala, Kasaragod, Kerala, India
| | - Manoj P Rayaroth
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam-530045, India
| | - Maharajan Kannan
- Department of Zoology, University of Allahabad, Prayagraj-211002, India
| | - Indumathi M Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Dhandapani P, Srinivasan V, Parthipan P, AlSalhi MS, Devanesan S, Narenkumar J, Rajamohan R, Ezhilselvi V, Rajasekar A. Development of an environmentally sustainable technique to minimize the sludge production in the textile effluent sector through an electrokinetic (EK) coupled with electrooxidation (EO) approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:81. [PMID: 38367190 DOI: 10.1007/s10653-023-01847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/27/2023] [Indexed: 02/19/2024]
Abstract
This study presents an environmentally sustainable method for minimizing sludge production in the textile effluent sector through the combined application of electrokinetic (EK) and electrooxidation (EO) processes. AAS and XRF analyses reveal that utilizing acidic electrolytes in the EK method successfully eliminates heavy metals (Cu, Mn, Zn, and Cr) from sludge, demonstrating superior efficiency compared to alkaline conditions. In addition, the total removal efficiency of COD contents was calculated following the order of EK-3 (60%), EK-1 (51%) and EK-2 (34%). Notably, EK-3, leveraging pH gradient fluctuations induced by anolyte in the catholyte reservoir, outperforms other EK systems in removing COD from sludge. The EK process is complemented by the EO process, leading to further degradation of dye and other organic components through the electrochemical generation of hypochlorite (940 ppm). At an alkaline pH of 10.0, the color and COD removal were effectively achieved at 98 and 70% in EO treatment, compared to other mediums. In addition, GC-MS identified N-derivative residues at the end of the EO. This study demonstrates an integrated approach that effectively eliminates heavy metals and COD from textile sludge, combining EK with EO techniques.
Collapse
Affiliation(s)
- Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Venkatesan Srinivasan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Jayaraman Narenkumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Varathan Ezhilselvi
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, 110012, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
- Adjunct Faculty, Department of Prothodontics, Saveetha Dental Collge and Hospital, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
3
|
Zou J, Chang Q, Guo C, Yan M. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119048. [PMID: 37742561 DOI: 10.1016/j.jenvman.2023.119048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
To increase the colonization of electroactive bacteria and accelerate the rate of extracellular electron transfer, a simple coated anode of microbial fuel cell was designed. Here, we took advantage of vanadium nitride (VN) particles to modify the carbon cloth (VN@CC). Compared with bare carbon cloth, the designed VN@CC bioanodes exhibited a larger electrochemically active area, better biocompatibility, and smaller charge transfer impedance. The MFC with VN@CC bioanodes achieved the maximum power density of 3.89 W m-2 and chemical oxygen demand removal rate of 84% when 1000 mg L-1 aniline was degraded, which were about 1.88 and 2.8 times that of CC. The morphology of biofilm and 16s rRNA gene sequence analysis proved that the VN@CC bioanodes facilitated the enrichment of electroactive bacteria (99.02%) and increased the ratio of fast electron transfer in the extracellular electron transfer, thus enhancing the MFC performance of aniline degradation and power output. This work disclosed that it was feasible to increase the overall performance of MFC by enhancing the EET efficiency and presented valuable insights for future work.
Collapse
Affiliation(s)
- Jixiang Zou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Qinghuan Chang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
4
|
Zhu X, Deng Y, Hu W, Chen H, Feng C, Chen N. Treatment of aniline-containing wastewater by electrochemical oxidation using Ti/RuO 2 anode: the influence of process parameters and reaction mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109691-109701. [PMID: 37775639 DOI: 10.1007/s11356-023-29097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/27/2023] [Indexed: 10/01/2023]
Abstract
Aniline detected in many industrial wastewater is a refractive organic pollutant with strong biological toxicity to aquatic organisms and humans. In this research, electrochemical oxidation process with Ti/RuO2 as the anode has been used to degrade aniline-containing wastewater on a laboratory scale. The influence of anode materials, electrolyte, NaCl concentration, current density, and aniline initial concentration on COD removal, ICE, and Ep were studied. The results showed that Cl- addition in the electrolyte is essential to promote aniline degradation efficiency and avoid the anode being passivated. Furthermore, decreasing the current density, increasing Cl- concentration, and initial aniline concentration are beneficial to increase current efficiency and reduce energy consumption. Although the addition of SO42- has a restriction on the active chlorine evolution process, the conductivity increased, which resulted in the reduction of energy consumption. At last, the aniline degradation mechanism in the presence of chloride ions was summed up and proposed based on the literature.
Collapse
Affiliation(s)
- Xu Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yang Deng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weiwu Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
- The Journal Center, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Hongyan Chen
- College of Science, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
5
|
Liu S, Xu L, Lin X, Zhang J, Wu D. From black water to flushing water: potential applications of chlorine-mediated indirect electrooxidation for ammonia removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69473-69485. [PMID: 37140864 DOI: 10.1007/s11356-023-27033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Removing ammonia from black water is one of the most urgent issues before it can be recycled as flushing water. In this study, an electrochemical oxidation (EO) process with commercial Ti/IrO2-RuO2 anodes to treat black water could remove 100% of different concentrations of ammonia by adjusting the dosage of chloride. Through the relationship between ammonia, chloride, and corresponding the pseudo-first-order degradation rate constant (Kobs), we could determine the chloride dosage and predict the kinetics of ammonia oxidation based on initial ammonia concentration in black water. The optimal N/Cl molar ratio was 1:1.8. The difference between black water and the model solution in terms of ammonia removal efficiency and oxidation products was explored. A higher chloride dosage was beneficial for removing ammonia and shortening the treatment cycle, but it also led to the generation of toxic by-products. Especially HClO and ClO3- generated in black water were 1.2 and 1.5 times more than the synthesized model solution under 40 mA cm-2. Through SEM characterization of electrodes and repeated experiments, the electrodes always maintained a high treatment efficiency. These results demonstrated the potential of the electrochemical process as a treatment method for black water.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiaoqing Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiaming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
6
|
Barroso-Martínez J, B. Romo AI, Pudar S, Putnam ST, Bustos E, Rodríguez-López J. Real-Time Detection of Hydroxyl Radical Generated at Operating Electrodes via Redox-Active Adduct Formation Using Scanning Electrochemical Microscopy. J Am Chem Soc 2022; 144:18896-18907. [PMID: 36215201 PMCID: PMC9586107 DOI: 10.1021/jacs.2c06278] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/30/2022]
Abstract
The hydroxyl radical (•OH) is one of the most attractive reactive oxygen species due to its high oxidation power and its clean (photo)(electro)generation from water, leaving no residues and creating new prospects for efficient wastewater treatment and electrosynthesis. Unfortunately, in situ detection of •OH is challenging due to its short lifetime (few ns). Using lifetime-extending spin traps, such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to generate the [DMPO-OH]• adduct in combination with electron spin resonance (ESR), allows unambiguous determination of its presence in solution. However, this method is cumbersome and lacks the necessary sensitivity and versatility to explore and quantify •OH generation dynamics at electrode surfaces in real time. Here, we identify that [DMPO-OH]• is redox-active with E0 = 0.85 V vs Ag|AgCl and can be conveniently detected on Au and C ultramicroelectrodes. Using scanning electrochemical microscopy (SECM), a four-electrode technique capable of collecting the freshly generated [DMPO-OH]• from near the electrode surface, we detected its generation in real time from operating electrodes. We also generated images of [DMPO-OH]• production and estimated and compared its generation efficiency at various electrodes (boron-doped diamond, tin oxide, titanium foil, glassy carbon, platinum, and lead oxide). Density functional calculations, ESR measurements, and bulk calibration using the Fenton reaction helped us unambiguously identify [DMPO-OH]• as the source of redox activity. We hope these findings will encourage the rapid, inexpensive, and quantitative detection of •OH for conducting informed explorations of its role in mediated oxidation processes at electrode surfaces for energy, environmental, and synthetic applications.
Collapse
Affiliation(s)
- Jaxiry
S. Barroso-Martínez
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica,
S.C. Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, 76703Querétaro, Mexico
| | - Adolfo I. B. Romo
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| | - Sanja Pudar
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| | - Seth T. Putnam
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| | - Erika Bustos
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica,
S.C. Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, 76703Querétaro, Mexico
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| |
Collapse
|
7
|
Zhang C, Yu Z, Wang X. A review of electrochemical oxidation technology for advanced treatment of medical wastewater. Front Chem 2022; 10:1002038. [PMID: 36186585 PMCID: PMC9520591 DOI: 10.3389/fchem.2022.1002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotics widely exist in medical wastewater, which seriously endanger human health. With the spread of the COVID-19 and monkeypox around the world, a large number of antibiotics have been abused and discharged. How to realize the green and efficient treatment of medical wastewater has become a hot research topic. As a common electrochemical water treatment technology, electrochemical oxidation technology (EOT) could effectively achieve advanced treatment of medical wastewater. Since entering the 21st century, electrochemical oxidation water treatment technology has received more and more attention due to its green, efficient, and easy-to-operate advantages. In this study, the research progress of EOT for the treatment of medical wastewater was reviewed, including the exploration of reaction mechanism, the preparation of functional electrode materials, combining multiple technologies, and the design of high-efficiency reactors. The conclusion and outlook of EOT for medical wastewater treatment were proposed. It is expected that the review could provide prospects and guidance for EOT to treat medical wastewater.
Collapse
Affiliation(s)
- Chengyu Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China
- *Correspondence: Zhisheng Yu,
| | - Xiangyang Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China
| |
Collapse
|
8
|
Performance Optimization and Toxicity Effects of the Electrochemical Oxidation of Octogen. Catalysts 2022. [DOI: 10.3390/catal12080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Octogen (HMX) is widely used as a high explosive and constituent in plastic explosives, nuclear devices, and rocket fuel. The direct discharge of wastewater generated during HMX production threatens the environment. In this study, we used the electrochemical oxidation (EO) method with a PbO2-based anode to treat HMX wastewater and investigated its degradation performance, mechanism, and toxicity evolution under different conditions. The results showed that HMX treated by EO could achieve a removal efficiency of 81.2% within 180 min at a current density of 70 mA/cm2, Na2SO4 concentration of 0.25 mol/L, interelectrode distance of 1.0 cm, and pH of 5.0. The degradation followed pseudo-first-order kinetics (R2 > 0.93). The degradation pathways of HMX in the EO system have been proposed, including cathode reduction and indirect oxidation by •OH radicals. The molecular toxicity level (expressed as the transcriptional effect level index) of HMX wastewater first increased to 1.81 and then decreased to a non-toxic level during the degradation process. Protein and oxidative stress were the dominant stress categories, possibly because of the intermediates that evolved during HMX degradation. This study provides new insights into the electrochemical degradation mechanisms and molecular-level toxicity evolution during HMX degradation. It also serves as initial evidence for the potential of the EO-enabled method as an alternative for explosive wastewater treatment with high removal performance, low cost, and low environmental impact.
Collapse
|
9
|
Bomfim SA, Dória AR, Gonzaga IMD, Oliveira RVM, Romão LPC, Salazar-Banda GR, Ferreira LFR, Eguiluz KIB. Toward efficient electrocatalytic degradation of iohexol using active anodes: A laser-made versus commercial anodes. CHEMOSPHERE 2022; 299:134350. [PMID: 35331750 DOI: 10.1016/j.chemosphere.2022.134350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The X-ray iodinated contrast medium iohexol is frequently detected in aquatic environments due to its high persistence and the inefficiency of its degradation by conventional wastewater treatments. Hence, the challenge faced in this study is the development of an alternative electrochemical treatment using active anodes. We investigate the oxidation of iohexol (16.42 mg L-1) using different operating conditions, focusing on the role of different mixed metal oxide anodes in the treatment efficiency. The electrocatalytic efficiency of the Ti/RuO2-TiO2 anode prepared using a CO2 laser heating and an ionic liquid is compared with Ti/RuO2-TiO2-IrO2 and Ti/IrO2-Ta2O5 commercial anodes. The hypochlorite ions generated by the anodes are also analyzed. The effect of the electrolyte composition (NaCl, Na2SO4, and NaClO4) and current density (15, 30, and 50 mA cm-2) on the iohexol degradation is also studied. The Ti/RuO2-TiO2 laser-made anode is more efficient than the commercial anodes. After optimizing experimental parameters, this anode removes 95.5% of iohexol in 60 min and displays the highest kinetic rate (0.059 min-1) with the lowest energy consumption per order (0.21 kWh m-3order-1), using NaCl solution as the electrolyte and applying 15 mA cm-2. Additionally, iohexol-intensified groundwater was used to compare the efficiency of anodes. The Ti/RuO2-TiO2 is also more efficient in removing the organic charge from the real water matrix (21.7% TOC) than the commercial anodes. Notably, the iohexol removal achieved is higher than all electrochemical treatments already reported using state-of-the-art non-active anodes in lower electrolysis time. Therefore, data from this study indicate that the electrochemical degradation of iohexol using the Ti/RuO2-TiO2 anode is efficient and has excellent cost-effectiveness; thus, it is a promising approach in the degradation of iohexol from wastewater. Furthermore, the Ti/RuO2-TiO2 active anode is competitive and can be an excellent option for treating effluents contaminated with recalcitrant organic compounds such as iohexol.
Collapse
Affiliation(s)
- Sthefany A Bomfim
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | - Aline R Dória
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | - Isabelle M D Gonzaga
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | | | - Luciane P C Romão
- Study of Natural Organic Matter Laboratory, Federal University of Sergipe, 49100-000, São Cristovão-SE, Brazil; Institute of Chemistry, UNESP, National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Materials (INCT-DATREM), P.O. Box 355, 14800-900, Araraquara-SP, Brazil
| | - Giancarlo R Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | - Luiz F R Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil.
| | - Katlin I B Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil.
| |
Collapse
|
10
|
Niu Y, Yin Y, Xu R, Yang Z, Wang J, Xu D, Yuan Y, Han J, Wang H. Electrocatalytic oxidation of low concentration cefotaxime sodium wastewater using Ti/SnO 2-RuO 2 electrode: Feasibility analysis and degradation mechanism. CHEMOSPHERE 2022; 297:134146. [PMID: 35231478 DOI: 10.1016/j.chemosphere.2022.134146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this research, Ti/SnO2-RuO2 stable anode was successfully prepared by thermal decomposition method, and low concentration cefotaxime sodium (CFX) was degraded by green and sustainable electrocatalytic oxidation technology. The electrocatalytic activity and stability of the Ti/SnO2-RuO2 coating electrode were studied according to the polarization curve of oxygen and chlorine evolution. The effects of current density, initial concentration, pH, electrolyte concentration, and other technological parameters on the degradation efficiency were discussed. Orthogonal experiment results indicated that when the current density was 25 mA cm-2, concentration of electrolyte was 5 mM and the pH value was 7, the best CFX removal rate of 86.33% could be obtained. The degradation efficiency of electrocatalytic oxidation was discussed through electrochemical analysis. Fourier transform infrared spectroscopy was used to analyze the different inlet and outlet stages before and after the degradation of CFX, and the possible degradation process was discussed. Therefore, the electrocatalytic oxidation of Ti/SnO2-RuO2 electrode was a clean and efficient technology, which could be widely used in the treatment of CFX wastewater.
Collapse
Affiliation(s)
- Yunxia Niu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Yue Yin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; North China University of Science and Technology Affiliated Hospital, Tangshan, PR China
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Zhinian Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Jia Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Yue Yuan
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, PR China.
| |
Collapse
|
11
|
Feng J, Lan H, Tao Q, Chen W, Dai Q. Electrochemical oxidation of a typical PPCP wastewater with a novel high-efficiency PbO2 anode based on NCNSs and Ce co-modification: parameter optimization and degradation mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Dong F, Pang Z, Yang S, Lin Q, Song S, Li C, Ma X, Nie S. Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect. ACS NANO 2022; 16:3449-3475. [PMID: 35225606 DOI: 10.1021/acsnano.1c10755] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ability to meet higher effluent quality requirements and the reduction of energy consumption are the biggest challenges in wastewater treatment worldwide. A large proportion of the energy generated during wastewater treatment processes is neglected and lost in traditional wastewater treatment plants. As a type of energy harvesting system, triboelectric nanogenerators (TENGs) can extensively harvest the microscale energies generated from wastewater treatment procedures and auxiliary devices. This harvested energy can be utilized to improve the removal efficiency of pollutants through photo/electric catalysis, which has considerable potential application value in wastewater treatment plants. This paper gives an overall review of the generated potential energies (e.g., water wave energy, wind energy, and acoustic energy) that can be harvested at various stages of the wastewater treatment process and introduces the application of TENG devices for the collection of these neglected energies during wastewater treatment. Furthermore, the mechanisms and catalytic performances of TENGs coupled with photo/electric catalysis (e.g., electrocatalysis, photoelectric catalysis) are discussed to realize higher pollutant removal efficiencies and lower energy consumption. Then, a thorough, detailed investigation of TENG devices, electrode materials, and their coupled applications is summarized. Finally, the intimate coupling of self-powered photoelectric catalysis and biodegradation is proposed to further improve removal efficiencies in wastewater treatment. This concept is conducive to improving knowledge about the underlying mechanisms and extending applications of TENGs in wastewater treatment to better solve the problems of energy demand in the future.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen Pang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuyi Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Zhou J, Wang T, Cheng C, Pan F, Zhu Y, Ma H, Niu J. Ultralong-lifetime Ti/RuO 2-IrO 2@Pt anodes with a strong metal-support interaction for efficient electrochemical mineralization of perfluorooctanoic acid. NANOSCALE 2022; 14:3579-3588. [PMID: 35179172 DOI: 10.1039/d1nr08098a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxidation is regarded as an effective technique for decomposing refractory organic compounds like perfluorooctanoic acid (PFOA). However, achieving highly efficient and long-life electrodes is still a great challenge. Herein, Ti/RuO2-IrO2@Pt anodes consisting of Pt4+ and Pt0 species were fabricated by combining modified microemulsion technology with a calcination process, in which Pt nanoparticles were highly dispersed and encapsulated in Ru-Ir composite oxides to form a strong metal-support interaction (SMSI) structure. The as-constructed SMSI layer on the Ti/RuO2-IrO2@Pt anode resulted in the improvement of the charge transfer capability and also increased the degradation (99.30%) and mineralization (91.32%) of PFOA during the electrochemical oxidation process. Notably, the service lifetime of Ti/RuO2-IrO2@Pt anodes was remarkably improved from 24 to 42.3 h compared to commercial Ti/RuO2-IrO2 anodes. Moreover, the possible degradation mechanism of PFOA was also speculated through the detection of short-chain perfluorocarboxylic acids and reactive radicals. These results not only revealed that the concept and methodology of SMSI could be an effective way for constructing highly efficient and stable electrocatalysts but also greatly advanced fundamental understanding.
Collapse
Affiliation(s)
- Jianjun Zhou
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Tian Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Cheng Cheng
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Fan Pan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
| | - Junfeng Niu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, PR China.
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
14
|
Yu D, Pei Y, Ji Z, He X, Yao Z. A review on the landfill leachate treatment technologies and application prospects of three-dimensional electrode technology. CHEMOSPHERE 2022; 291:132895. [PMID: 34780739 DOI: 10.1016/j.chemosphere.2021.132895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
With the expansion of urbanisation, the total amount of solid waste produced by urban residents has been increasing, and the problem of municipal solid waste disposal has also been aggravated. Landfill leachate treatment technologies could be divided into three categories: biological, physical and advanced oxidation treatment technology. Among them, advanced oxidation treatment technology has a good effect on the treatment of landfill leachate with little secondary pollution and has excellent application potential. Three-dimensional (3D) electrode technology, as a new type of advanced oxidation technology, could remove refractory pollutants in water and has attracted considerable attention. This article aims to (1) compare existing landfill leachate treatment technologies, (2) summarise 3D electrode technology application scenarios, (3) discuss the advantages of 3D electrode technology in landfill leachate treatment and (4) look ahead the future directions of 3D electrode technology in landfill leachate treatment. We hope that this article will be helpful to researchers who are interested in the field of landfill leachate treatment.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zehua Ji
- School of Environment, Tsinghua University, Beijing, 100083, China
| | - Xudan He
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
15
|
|
16
|
Shmychkova O, Girenko D, Velichenko A. Cl
–
/ClO
–
process on SnO
2
‐based electrodes in low‐concentrated NaCl solutions. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Olesia Shmychkova
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| | - Dmitry Girenko
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| | - Alexander Velichenko
- Physical Chemistry Department Ukrainian State University of Chemical Technology Dnipro Ukraine
| |
Collapse
|