1
|
Hammel SC, Schlünssen V, Hope D, Dereviankin M, Sandau CD, Hougaard KS, Meyer HW, Kines P, Jensen KA, Frederiksen M. Lower chlorinated PCBs accumulate in demolition workers while working on a contaminated worksite. ENVIRONMENT INTERNATIONAL 2024; 193:109076. [PMID: 39542766 DOI: 10.1016/j.envint.2024.109076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Several buildings in a Danish social housing estate exceeded indoor air guidance values for polychlorinated biphenyls (PCBs), leading to their demolition. Here, we conducted a biomonitoring study among the workers on-site (n = 24) to evaluate their exposure to all 209 PCBs across the two-year demolition. We compared their PCB serum concentrations and accumulation to those of demolition workers at other worksites (n = 21) and office workers (n = 17). Demolition workers were provided with personal protective equipment according to risk assessments for PCB-related work. Serum PCBs were measured from baseline and up to two annual follow-up visits using gas chromatography high-resolution mass spectrometry. Forty-six peaks representing 58 PCBs were detected in > 60 % of serum samples; eight congeners were found in every sample. PCB-153 was the most abundant congener (median = 22.1 ng/g lipid). After adjusting for age and smoking status, demolition workers after one year on the contaminated site experienced more than a four-fold increase in all lower chlorinated PCBs compared to office workers at baseline, with increases most prominent for tri- and tetra-CBs (10β = 6.2 and 9.2, p < 0.01). Nine PCBs were significantly elevated from baseline to year 1 in only contaminated-site demolition workers, with the largest increase observed for PCB-66/80. For higher chlorinated PCBs, levels remained consistent or decreased slightly over the three samples from these workers. Those who worked in active demolition for at least 4 years at baseline experienced a 40 % increase (95 % CI: 10 %, 90 %) in the WHO-12 PCB sum. Age significantly predicted increases in PCBs, which tracked closely with logKow values. Our study showed that despite safety measures, demolition workers who worked on a PCB-contaminated site experienced increased and accumulating internal exposure to lower chlorinated PCBs compared to general demolition and office workers. Consequently, workers' safety should be carefully considered to reduce exposures among this high risk group.
Collapse
Affiliation(s)
- Stephanie C Hammel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, 8000 Aarhus, Denmark
| | - David Hope
- Pacific Rim Laboratories Inc., Surrey, BC, Canada
| | | | - Courtney D Sandau
- Chemistry Matters Inc., Calgary, Canada; Mount Royal University, Department of Earth and Environmental Sciences, Calgary, Canada
| | - Karin Sørig Hougaard
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Harald W Meyer
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Pete Kines
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Keld Alstrup Jensen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Hammel SC, Frederiksen M. Quantifying 209 Polychlorinated Biphenyl Congeners in Silicone Wristbands to Evaluate Differences in Exposure among Demolition Workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6499-6508. [PMID: 38572580 PMCID: PMC11025118 DOI: 10.1021/acs.est.3c10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
A social housing estate in Denmark was designated for demolition due to exceedance of guidance values for polychlorinated biphenyls (PCBs) in indoor air. Here, we deployed precleaned silicone wristbands (n = 46) among demolition workers of these contaminated buildings during single workdays while conducting various work tasks. We established a method to analyze all 209 PCBs in wristbands to identify prominent congeners of exposure and evaluate differences between tasks. Wristbands were extracted using microwave-assisted extraction and then concentrated for gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Twenty-nine chromatographic peaks representing 37 congeners were detected in every wristband, and tetra-CBs were the dominant homologue group. PCB-66, -44, and -70 were the most abundant congeners measured in worker wristbands, none of which are included within the typical seven indicator or WHO 12 PCBs. Workers who cut PCB-containing sealants had wristbands with the highest PCB concentrations (geometric mean ∑209PCBs = 1963 ng/g wristband), which were followed by those handling concrete elements on the building roof. Additionally, wristbands captured a broader range of PCBs than has been previously measured in air and serum samples. Taken together, our results highlight the importance of total congener analysis in assessing current PCB exposure in demolition work and the utility of wristbands for assessing these exposures.
Collapse
Affiliation(s)
- Stephanie C. Hammel
- National Research Centre
for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Marie Frederiksen
- National Research Centre
for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Hammel SC, Andersen HV, Knudsen LE, Frederiksen M. Inhalation and dermal absorption as dominant pathways of PCB exposure for residents of contaminated apartment buildings. Int J Hyg Environ Health 2023; 247:114056. [PMID: 36395656 DOI: 10.1016/j.ijheh.2022.114056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022]
Abstract
Applications of polychlorinated biphenyls (PCBs) in buildings and their persistence in indoor environments have led to cases of current and highly elevated exposure in humans, despite the global cease of production decades ago. Personal exposure to PCBs was assessed among residents in a social housing estate in Denmark containing both contaminated (n = 67) and non-contaminated (n = 23) apartments. Samples and estimated daily intakes (EDIs) were assessed for 15 PCB congeners, and body burden, which was limited by the dietary data availability, was compared across 7 indicator PCBs, with its sum (PCBsum7) often applied in European regulation of PCBs. Median PCBsum7 EDI across measured pathways for exposed residents was 101 ng· (kg bodyweight)-1· day-1, with the majority of exposure (60%) coming from inhalation of contaminated indoor air. Calculated from both PCBs measured in indoor air and on hand wipes, dermal absorption estimates showed comparable results and served as a secondary exposure pathway, accounting for 35% of personal exposure and considering selected assumptions and sources of physical-chemical parameters. Estimates revealed that diet was the primary PCB source among the reference group, accounting for over 75% of the PCBsum7 EDI across exposure routes. When evaluating overall EDIs across the two study groups and including dietary estimates, PCB exposure among exposed residents was around 10 times higher than the reference group. Solely within the exposed population, pathway-specific body burdens were calculated to account for exposure across years of residence in contaminated apartments, where lower chlorinated PCBs were dominant in indoor air. Among these dominant congeners, estimated body burdens of PCB-28 and -52 were significantly correlated with measured serum (rs = 0.49, 0.45; p < 0.001). This study demonstrates that inhalation and dermal absorption serve as dominant exposure pathways for residents of apartments contaminated with predominantly lower chlorinated PCBs and suggest that predictions of body burden from indoor environment measurements may be comparable to measured serum PCBs.
Collapse
Affiliation(s)
- Stephanie C Hammel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.
| | - Helle Vibeke Andersen
- Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, 2400, Copenhagen SV, Denmark
| | - Lisbeth E Knudsen
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1014, Copenhagen K, Denmark
| | - Marie Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Othman N, Ismail Z, Selamat MI, Sheikh Abdul Kadir SH, Shibraumalisi NA. A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13923. [PMID: 36360801 PMCID: PMC9657815 DOI: 10.3390/ijerph192113923] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) were widely used in industrial and commercial applications, until they were banned in the late 1970s as a result of their significant environmental pollution. PCBs in the environment gained scientific interest because of their persistence and the potential threats they pose to humans. Traditionally, human exposure to PCBs was linked to dietary ingestion. Inhalational exposure to these contaminants is often overlooked. This review discusses the occurrence and distribution of PCBs in environmental matrices and their associated health impacts. Severe PCB contamination levels have been reported in e-waste recycling areas. The occurrence of high PCB levels, notably in urban and industrial areas, might result from extensive PCB use and intensive human activity. Furthermore, PCB contamination in the indoor environment is ten-fold higher than outdoors, which may present expose risk for humans through the inhalation of contaminated air or through the ingestion of dust. In such settings, the inhalation route may contribute significantly to PCB exposure. The data on human health effects due to PCB inhalation are scarce. More epidemiological studies should be performed to investigate the inhalation dose and response mechanism and to evaluate the health risks. Further studies should also evaluate the health impact of prolonged low-concentration PCB exposure.
Collapse
Affiliation(s)
- Naffisah Othman
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Mohamad Ikhsan Selamat
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Nur Amirah Shibraumalisi
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
5
|
Frederiksen M, Andersen HV, Ovesen SL, Vorkamp K, Hammel SC, Knudsen LE. Silicone wristbands as personal passive samplers of exposure to polychlorinated biphenyls in contaminated buildings. ENVIRONMENT INTERNATIONAL 2022; 167:107397. [PMID: 35933843 DOI: 10.1016/j.envint.2022.107397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) were used in a number of industrial products from 1950 to 80s, including building materials. As a result, some buildings exhibit high levels of PCBs in the indoor environment. The aim of this study was to test silicone wristbands as a method for estimating personal exposure to PCBs in buildings both in controlled experiments and field settings. In the controlled study, the sampling kinetics of silicone wristbands were investigated in a 31-day uptake study. The field study focused on the application of wristbands as a personal exposure measure. It included 71 persons in a contaminated housing estate and 23 persons in a reference group. The linear uptake of PCBs ranged from 2 to 24 days for PCB-8, 18, 28, 31, 40, 44, 49, 52, 66, 99, and 101 under controlled conditions. A generic sampling rate (Rk) of 2.3 m3 d-1 corresponding to a mass transfer coefficient of 17 m h-1 was found in the controlled kinetic study. Partitioning coefficients were also determined for the nine congeners. In the field study, an apparent generic field sampling rate (Rf) of 2.6 m3 d-1 was found; when adjusted to reported hours exposed, it increased to 3.5 m3 d-1. The wristbands were shown to be a good tool for predicting airborne exposure, as there was a highly significant difference between the exposed and reference group as well as a clear trend when used for ranking of exposure. In correlation analyses, highly significant correlations were observed between air and wristband levels, though adjusting by self-reported exposure time only increased the correlation marginally in the field study. The obtained kinetic data can be used for estimating the magnitude of external exposure. The advantages provided by the wristbands in the form of easy use and handling are significant, though the limitations should also be acknowledged.
Collapse
Affiliation(s)
- Marie Frederiksen
- National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark.
| | - Helle Vibeke Andersen
- Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, 2400 Copenhagen SV, Denmark
| | - Sofie Lillelund Ovesen
- National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Stephanie C Hammel
- National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Lisbeth E Knudsen
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1014 Copenhagen K, Denmark
| |
Collapse
|
6
|
Liu X. Understanding Semi-volatile Organic Compounds (SVOCs) in Indoor Dust. INDOOR + BUILT ENVIRONMENT : THE JOURNAL OF THE INTERNATIONAL SOCIETY OF THE BUILT ENVIRONMENT 2022; 31:291-298. [PMID: 35221787 PMCID: PMC8879700 DOI: 10.1177/1420326x211070859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711
| |
Collapse
|