1
|
Liu M, Huang J, Xie H, Li L, Han W, Jiang X, Wang J, Wei P, Xie Y, Qi Y. Constructing a novel type-Ⅱ ZnO/BiOCOOH heterojunction microspheres for the degradation of tetracycline and bacterial inactivation. CHEMOSPHERE 2024; 346:140664. [PMID: 37949191 DOI: 10.1016/j.chemosphere.2023.140664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
A novel ZnO/BiOCOOH microsphere photocatalyst with a type-Ⅱ mechanism was developed for the first time. This strategy was accomplished by immobilizing ZnO onto 3D BiOCOOH microspheres via a single-step hydrothermal synthesis method. The ability to degrade tetracycline (TC) in water under visible light and inactivate bacteria of as-catalyst were analyzed. Among the prepared samples, the ZnO/BiOCOOH composite, with a mass ratio of 40%(Zn/Bi), exhibited the highest photocatalytic activity, which was able to degrade 98.22% of TC in just 90 min and completely eradicated Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in 48 h, and had potential application in solving water resource environmental pollution. The photoelectric characteristics of the photocatalysts were examined by means of electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) spectroscopy. The findings indicated that the superior photocatalytic performance could be credited to the dissociation of electrons (e-) and holes (h+) in heterojunction composites. Finally, electron paramagnetic resonance (EPR) and capture experiments were conducted to confirm the photocatalytic mechanism of the type-Ⅱ heterojunction. This work provides a new Bi-base photocatalyst for aqueous environmental control.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China
| | - Junzi Huang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China
| | - Huihui Xie
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China
| | - Liang Li
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China
| | - Weitao Han
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China
| | - Xinhui Jiang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China
| | - Jide Wang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China
| | - Peng Wei
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China.
| | - Yahong Xie
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China.
| | - Ying Qi
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, PR China.
| |
Collapse
|
2
|
Cui X, Xu L, Qi K, Lan H. Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria. Molecules 2023; 28:6034. [PMID: 37630286 PMCID: PMC10458778 DOI: 10.3390/molecules28166034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
In order to investigate the antibacterial mechanism of tea polyphenols and theaflavins against oral cariogenic bacteria, the pH value of the culture medium, the number of bacteria adhering to the smooth glass tube wall, and the electrical conductivity value within 10 h were measured, respectively. The effects of four concentrations of tea polyphenols and theaflavins below the MIC value were studied on acid production, adhesion, and electrical conductivity of oral cariogenic bacteria. The live/dead staining method was used to observe the effects of four concentrations of tea polyphenols and theaflavins below the MIC value on the biofilm formation of oral cariogenic bacteria under a laser scanning confocal microscope. With the increase in concentrations of tea polyphenols and theaflavins, the acid production and adhesion of the cariogenic bacteria gradually decreased, and the conductivity gradually increased. However, the conductivity increase was not significant (p < 0.05). Compared with the control group, the 1/2MIC and 1/4MIC tea polyphenols and theaflavins treatments significantly reduced the biomass of the cariogenic biofilm (p < 0.05). The confocal laser scanning microscope showed that the integrated optical density of green fluorescence of the cariogenic biofilm gradually decreased with the increase in agent concentration after the action of tea polyphenols and theaflavins.
Collapse
Affiliation(s)
- Xia Cui
- College of Pharmacy, Dali University, Dali 671000, China
- College of Fundamentals and Pharmacy, Yunnan Medical Health College, Anning 650300, China
| | - Lei Xu
- College of Pharmacy, Dali University, Dali 671000, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| | - Hai Lan
- College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
3
|
Zhou Y, Wang Z, Yin H, Cui X, Tian Y, Qiao Z, Wang S, Hu R, Lv W, Mao A, Wang J. One-pot synthesis of 2D Ag/BiOCl/Bi 2O 2CO 3 S-scheme heterojunction with oxygen vacancy for photocatalytic disinfection of Fusarium graminearum in vitro and in vivo. CHEMOSPHERE 2023; 331:138768. [PMID: 37127194 DOI: 10.1016/j.chemosphere.2023.138768] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
2D Ag/BiOCl/Bi2O2CO3 S-scheme heterojunction was prepared with oxygen vacancy (OVs) via one-pot hydrothermal method. The XRD and XPS analysis indicated the synthesized sample contained Ag nanoparticles (AgNPs) instead of Ag ions. The SEM and HRTEM pictures showed that BiOCl/Bi2O2CO3 nanosheets were modified with AgNPs. Compared with AgNPs, BiOCl, and Bi2O2CO3, Ag/BiOCl/Bi2O2CO3 exhibited highly photocatalytic inactivation of pathogenic fungi (Fusarium graminearum) due to the wide light absorption range and S-scheme heterojunction structure, which improved the production and transfer of photogenerated carrier, and enhanced the separation of photogenerated e-/h+ pairs. In addition, the improved photocatalytic disinfection against Fusarium graminearum of Ag/BiOCl/Bi2O2CO3 was verified in Sedeveria Letizia plant. Furthermore, active species capture assay and ESR experiments disclosed the involvement of OVs, h+, ∙O2-, ∙OH, and -for Fusarium graminearum destruction during photocatalysis process. The S-scheme heterojunction was proved via oxygen vacancy, which was extensively beneficial to increase charge transmission and separation efficiency. Our work proposed Ag/BiOCl/Bi2O2CO3 was an efficient and ecological fungicide to inactive Fusarium graminearum in vitro and vivo for crop disease.
Collapse
Affiliation(s)
- Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Zhuangzhuang Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China.
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Ying Tian
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Zhen Qiao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Suo Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Runye Hu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Wenjing Lv
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - An Mao
- State Forestry and Grassland Administration Key Laboratory of Siviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, 271018, Taian, Shandong, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, 271018, Taian, Shandong, China
| |
Collapse
|
4
|
Eshghi F, Mehrabadi Z, Farsadrooh M, Hayati P, Javadian H, Karimi M, Karimi-Maleh H, Rostamnia S, Karaman C, Aghababaei F. Photocatalytic degradation of remdesivir nucleotide pro-drug using [Cu(1-methylimidazole) 4(SCN) 2] nanocomplex synthesized by sonochemical process: Theoretical, hirshfeld surface analysis, degradation kinetic, and thermodynamic studies. ENVIRONMENTAL RESEARCH 2023; 222:115321. [PMID: 36696944 DOI: 10.1016/j.envres.2023.115321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The first ultrasonic synthesis of [Cu(L)4(SCN)2] (L = 1-methylimidazole) nanocomplex was carried out under ultrasonic irradiation, and its photocatalytic performance for the degradation of remdesivir (RS) under sunlight irradiation was comprehensively investigated for the first time in this study. The physicochemical properties of the synthesized photocatalyst were examined by Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), diffuse reflectance spectroscopy (DRS), and thermogravimetric analysis (TGA) techniques. The band gap of the synthesized [Cu(L)4(SCN)2] nanocomplex was determined to be 2.60 eV by the diffuse reflectance spectroscopy method using Kubelka-Munk formula. The photocatalytic performance of nanocomplex was examined for the removal of remdesivir under sunlight from water for which the results indicated that an amount of 0.5 gL-1 of the [Cu(L)4(SCN)2] nanocomplex was sufficient to remove more than 96% remdesivir from its 2 mg L-1 concentration within 20 min, at pH = 6. The kinetic data showed that the photodegradation onto the [Cu(L)4(SCN)2] nanocomplex has a high correlation (0.98) with the pseudo-second-order kinetic model. The decrease in chemical oxygen demand (COD) (from 70.5 mg L-1 to 36.4 mg L-1) under optimal conditions clearly confirmed the mineralization of the RS drug. The values of ΔS° (-0.131 kJ mol-1 K-1) and ΔH° (-49.750 kJ mol-1) were negative, indicating that the adsorption process was spontaneous and more favorable in lower temperatures. Moreover, the RS structure in the open shell state and the high HOMO and LUMO gaps based on the M06/6-31 + G (d) level of theory may be a confirmation of this fact. In addition, the Hirshfeld surface analysis (HSA) of the crystal packing of the prepared complex was discussed in detail to evaluate the interactions between the crystal packings. The results of this study confirm that the [Cu(L)4(SCN)2] nanocomplex can be successfully used for the photodegradation of pharmaceutical contaminants.
Collapse
Affiliation(s)
- Fazlolah Eshghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Zohreh Mehrabadi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran.
| | - Majid Farsadrooh
- Renewable Energies Research Laboratory, Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, P.O. Box, 98135 674, Zahedan, Iran.
| | - Payam Hayati
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
| | - Hamedreza Javadian
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran
| | - Mehdi Karimi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O.Box 611731, Xiyuan Ave, Chengdu, China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Fatemeh Aghababaei
- Centre D'Innovació, Recerca I Transferència en Tecnologia Dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal I Dels Aliments, UAB-Campus, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
5
|
Li Y, Shu S, Huang L, Liu J, Liu J, Yao J, Liu S, Zhu M, Huang L. Construction of a novel double S-scheme structure WO 3/g-C 3N 4/BiOI: Enhanced photocatalytic performance for antibacterial activity. J Colloid Interface Sci 2023; 633:60-71. [PMID: 36434936 DOI: 10.1016/j.jcis.2022.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
In recent years, the threat to human health from bacteria in wastewater has attracted attention, and photocatalytic technology has emerged as a promising strategy for inactivating bacteria in water. Therefore, it is of great research value to develop a novel high-efficiency photocatalytic system with the visible light response. We successfully designed a double S-scheme heterojunction composite WO3/g-C3N4/BiOI (WCB) in this paper. The preparation of WCB composites was demonstrated by a series of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The antibacterial effects of photocatalysts against representative Gram-negative strain Escherichia coli (E. coli) and Gram-positive strain Staphylococcus aureus (S. aureus) were tested under LED light irradiation. The novel photocatalyst presented excellent antibacterial properties, inactivating E. coli in 12 min and S. aureus in 20 min. The bacterial cell inactivation process was studied by scanning electron microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Active species capture experiments show that the active species present in the WCB composites in the process of inactivating bacteria are h+, e-, OH and O2-. In conclusion, the synthesized double S-scheme WCB photocatalyst exhibits remarkable photocatalytic antibacterial activity under LED light and has broad prospects for practical application in water antibacterial treatment.
Collapse
Affiliation(s)
- Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Shuangxiu Shu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Liying Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiawei Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiao Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuai Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Menghao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijing Huang
- Institute of Micro-Nano Optoelectronic and Terahertz Technology, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
6
|
Efficient CO2 reduction to formate using a Cu-doped BiVO4 electrocathode in a WO3 photoanode-assisted photoelectrocatalytic system. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Wang J, Jiang Z. Ultrasonic-assisted synthesis of porous S-doped carbon nitride ribbons for photocatalytic reduction of CO 2. ULTRASONICS SONOCHEMISTRY 2023; 92:106273. [PMID: 36603463 PMCID: PMC9826939 DOI: 10.1016/j.ultsonch.2022.106273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A series of porous S-doped carbon nitride ribbons (PSCN) were prepared by one-pot hydrothermal and sonochemical synthesis techniques. The morphologies and nanostructures of the catalysts were characterized by SEM, XRD and IR, which confirmed the pristine graphitic structures of carbon nitrides retained in the products. Due to sonication treatment, PSCN has porous structures in the thin ribbon and larger specific surface areas (PSCN 43.5 m2/g, SCN 26.6 m2/g and GCN 6.5 m2/g). XPS and elemental mappings verified that sulfur atoms were successfully introduced into the carbon nitride framework. Diffuse reflectance spectroscopy (DRS) results showed S-doping in the carbon nitride reduced the bandgap energy and enhanced their capability of the utilization of visible light, which contributed to higher photo-generated current. Photoluminescence (PL) analysis indicates the recombination of photogenerated carriers was suppressed in PSCN. Moreover, the photocatalytic performance showed that S-doping and porous and thin ribbon nanostructures may effectively boost the CO2 reduction rate (to as much as 5.8 times of GCN) when illuminated byvisible light (>420 nm) without the need of sacrificial materials. The preliminary mechanisms of the formation of PSCN and its applications in photocatalytic CO2 reduction are proposed. It highlights the potential of the current technique to produce effective, nonmetal-doped carbon nitride photocatalysts.
Collapse
Affiliation(s)
- Jiabei Wang
- School of Materials Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Jiangbei, Ningbo, Zhejiang, 315211, China
| | - Zhiqiang Jiang
- School of Materials Science and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Jiangbei, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
8
|
Ni Z, Wan M, Tang G, Sun L. Synthesis of CuO and PAA-Regulated Silver-Carried CuO Nanosheet Composites and Their Antibacterial Properties. Polymers (Basel) 2022; 14:polym14245422. [PMID: 36559789 PMCID: PMC9787518 DOI: 10.3390/polym14245422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
With the aid of a facile and green aqueous solution approach, a variety of copper oxide (CuO) with different shapes and polyacrylic-acid (PAA)-regulated silver-carried CuO (CuO@Ag) nanosheet composites have been successfully produced. The point of this article was to propose a common synergy using Ag-carried CuO nanosheet composites for their potential antibacterial efficiency against three types of bacteria such as E. coli, P. aeruginosa, and S. aureus. By using various technical means such as XRD, SEM, and TEM, the morphology and composition of CuO and CuO@Ag were characterized. It was shown that both CuO and CuO@Ag have a laminar structure and exhibit good crystallization, and that the copper source and reaction duration have a sizable impact on the morphology and size distribution of the product. In the process of synthesizing CuO@Ag, the appropriate amount of polyacrylic acid (PAA) can inhibit the agglomeration of Ag NPs and regulate the size of Ag at about ten nanometers. In addition, broth dilution, optical density (OD 600), and electron microscopy analysis were used to assess the antimicrobial activity of CuO@Ag against the above three types of bacteria. CuO@Ag exhibits excellent synergistic and antibacterial action, particularly against S. aureus. The antimicrobial mechanism of the CuO@Ag nanosheet composites can be attributed to the destruction of the bacterial cell membrane and the consequent leakage of the cytoplasm by the release of Ag+ and Cu2+. The breakdown of the bacterial cell membrane and subsequent leakage of cytoplasm caused by Ag+ and Cu2+ released from antimicrobial agents may be the cause of the CuO@Ag nanosheet composites' antibacterial action. This study shows that CuO@Ag nanosheet composites have good antibacterial properties, which also provides the basis and ideas for the application research of other silver nanocomposites.
Collapse
Affiliation(s)
- Zhihui Ni
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
- Correspondence: (Z.N.); (L.S.)
| | - Menghui Wan
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Gongming Tang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
- Correspondence: (Z.N.); (L.S.)
| |
Collapse
|
9
|
Gu X, Tan C, He L, Guo J, Zhao X, Qi K, Yan Y. Mn 2+ doped AgInS 2 photocatalyst for formaldehyde degradation and hydrogen production from water splitting by carbon tube enhancement. CHEMOSPHERE 2022; 304:135292. [PMID: 35691399 DOI: 10.1016/j.chemosphere.2022.135292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 05/26/2023]
Abstract
In this work, AgInS2 and Mn2+ doped AgInS2 (Mn-AgInS2) with different Mn2+: (Ag+ + In3+) ratios were synthesized via a low temperature liquid method. The photocatalytic activity of the obtained samples was followed by taking formaldehyde as the target pollutant under visible light irradiation. The photocatalysts were passed through various characterization procedures to investigate their morphological, structural and photophysical characteristics. The optimal proportion sample [with the ratio n (Mn2+): n (Ag+ + In3+) = 1:100] photodegraded about 79% formaldehyde in 150 min. These upgraded activities are attributed to the enhanced visible light absorption and superior charge separation due to the presence of Mn2+ as confirmed site from charge separation measurements. In addition, a possible mechanism for the photodegradation of formaldehyde is proposed based on the experimental results. Furthermore, the photocatalytic water splitting performance of Mn-AgInS2 and multi-walled carbon nanotubes (MWCNTs) modified Mn-AgInS2 is investigated and compared under simulated sunlight irradiation, and remarkable hydrogen production is achieved (105 μmol h-1 g-1) by using the latter.
Collapse
Affiliation(s)
- Xinyue Gu
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Chen Tan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Lixian He
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Jie Guo
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Xia Zhao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China.
| | - Ya Yan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China.
| |
Collapse
|
10
|
Mohanty S, Jamal N, Das AK, Prashanth KG. Electroless Ni-P-MoS 2-Al 2O 3 Composite Coating with Hard and Self-Lubricating Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6806. [PMID: 36234147 PMCID: PMC9572371 DOI: 10.3390/ma15196806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The work aimed to produce Ni-P-MoS2-Al2O3 on Al-7075 alloys with multiple attributes through an electroless (EL) plating route. The effects of additives (MoS2 and Al2O3) in the EL bath on the surface morphology, topography, hardness, composition (phase and elemental), roughness, wettability, and coating thickness were evaluated. Results indicate a substantial enhancement in microhardness of the EL-coated surfaces by 70% (maximum hardness = ~316 HV) using powders, and 30% (244 HV) without powders. The maximum coating thickness and water contact angle obtained with powders were 6.16 μm and 100.46°, respectively. The coefficient of friction for the samples prepared using powders was 0.12, and for the base material it was 0.18. The compositional analysis through EDS and XRD suggested the incorporation of a hard and lubricious layer on the EL-coated surface owing to the presence of different phases of Al, Mo, P, Zn, O, and S. Therefore, the resulting coating surfaces impart hardness, self-lubrication, hydrophobicity, and wear resistance simultaneously.
Collapse
Affiliation(s)
- Shalini Mohanty
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 12616 Tallinn, Estonia
| | - Naghma Jamal
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Alok Kumar Das
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Konda Gokuldoss Prashanth
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 12616 Tallinn, Estonia
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben, Austria
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 630014, India
| |
Collapse
|
11
|
Yao X, Liu Y, Chu Z, Jin W. Membranes for the life sciences and their future roles in medicine. Chin J Chem Eng 2022; 49:1-20. [PMID: 35755178 PMCID: PMC9212902 DOI: 10.1016/j.cjche.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023]
Abstract
Since the global outbreak of COVID-19, membrane technology for clinical treatments, including extracorporeal membrane oxygenation (ECMO) and protective masks and clothing, has attracted intense research attention for its irreplaceable abilities. Membrane research and applications are now playing an increasingly important role in various fields of life science. In addition to intrinsic properties such as size sieving, dissolution and diffusion, membranes are often endowed with additional functions as cell scaffolds, catalysts or sensors to satisfy the specific requirements of different clinical applications. In this review, we will introduce and discuss state-of-the-art membranes and their respective functions in four typical areas of life science: artificial organs, tissue engineering, in vitro blood diagnosis and medical support. Emphasis will be given to the description of certain specific functions required of membranes in each field to provide guidance for the selection and fabrication of the membrane material. The advantages and disadvantages of these membranes have been compared to indicate further development directions for different clinical applications. Finally, we propose challenges and outlooks for future development.
Collapse
Affiliation(s)
- Xiaoyue Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
12
|
Vasseghian Y, Mousavi Khaneghah A, Khataee A. New emerging techniques for detection and degradation of hazardous materials in environments: Challenges and perspectives. CHEMOSPHERE 2022; 286:131589. [PMID: 34325253 DOI: 10.1016/j.chemosphere.2021.131589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, 13083-862, São Paulo, Brazil
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
13
|
Sharma S, Basu S. Construction of an efficient and durable hierarchical porous CuO/SiO2 monolith for synergistically boosting the visible-light-driven degradation of organic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Synthesis of Ag Loaded ZnO/BiOCl with High Photocatalytic Performance for the Removal of Antibiotic Pollutants. CRYSTALS 2021. [DOI: 10.3390/cryst11080981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ag@ZnO/BiOCl composites were successfully prepared by in situ precipitation and hydrothermal synthesis and used for the photocatalytic degradation of tetracycline hydrochloride antibiotics. An enhanced photodegradation efficiency was detected after loading Ag nanoparticles, which is attributed to the surface plasmon resonance effect. The optimized sample containing 4% Ag showed 80.4% degradation efficiency in 80 min, which is 2.1 and 1.9 times higher than those of ZnO and ZnO/BiOCl, respectively. The major degrading species involved in the photocatalytic process were detected to be super oxide anions and holes. Based on the obtained results, a possible charge transfer and degradation mechanism has been proposed. This study shows that Ag@ZnO/BiOCl catalyst has a good potential for photodegradation of organic pollutants in water.
Collapse
|
15
|
Qi K, Cui N, Zhang M, Ma Y, Wang G, Zhao Z, Khataee A. Ionic liquid-assisted synthesis of porous boron-doped graphitic carbon nitride for photocatalytic hydrogen production. CHEMOSPHERE 2021; 272:129953. [PMID: 35534981 DOI: 10.1016/j.chemosphere.2021.129953] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 05/26/2023]
Abstract
This work presents a simple way to prepare boron-doped graphitic carbon nitride (B/g-C3N4), exhibiting an enhanced photocatalytic performance to split water for hydrogen production. B/g-C3N4 was synthesized via the pyrolysis of urea and 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4), which was adopted as the boron source. The aggregate of B/g-C3N4 nanosheets shows a porous structure since some bubbles are generated under the heat decomposition of ionic liquids. The porous structure is conducive to the exposure of more active sites. Moreover, B-doping will form some localized electronic energy levels in the band gap of g-C3N4, thereby extending its visible light response. As impacted by the porous structure of B/g-C3N4 aggregate and the narrow the band gap, the photocatalytic hydrogen generation rate (901 μmol h-1 g-1) is increased, almost 3 times faster than g-C3N4 (309 μmol h-1 g-1). This work proposed a simple method to prepare the aggregate of B/g-C3N4 nanosheets exhibiting pores under ionic liquid assistance. It can be a novel method to design porous polymer photocatalysts.
Collapse
Affiliation(s)
- Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Nan Cui
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
| | - Manjie Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
| | - Yuhua Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Guangzhao Wang
- Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China.
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China; State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, China.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|