1
|
Thanh Pham HT, Kuroda S, Khairina Y, Morikawa M. Reconstruction of a functional duckweed holobiont to reduce nutrient competition with microalgae for high-yield biomass production. BIORESOURCE TECHNOLOGY 2025:132110. [PMID: 39884320 DOI: 10.1016/j.biortech.2025.132110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/22/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Duckweed has been highlighted as an appropriate biomass for low-carbon industries because of its significantly high production rate and multiple resource value. However, the outbreak of microalgae is a practical issue that decreases duckweed production yield. This study demonstrated that the growth of the duckweed Lemna aequinoctialis from factory wastewater was enhanced by colonization with indigenous plant growth-promoting bacteria (PGPB), whereas the growth of a duckweed competitor microalga, Coelastrella sp. KC10, from the same wastewater was reduced by indigenous microalgal growth-inhibiting bacteria (MGIB). Finally, a quadruple co-culture of a synthetic duckweed holobiont, L. aequinoctialis colonized by both KLaR20 (PGPB) and KLaR16 (MGIB), and Coelastrella sp. KC10 successfully recovered the duckweed production level by 117.5% in frond number and 84.5% in dry weight in the absence of microalgae. This case study demonstrates for the first time that duckweed holobionts can be reconstructed and enforced to antagonize growth competitor microalgae.
Collapse
Affiliation(s)
- Huyen Thi Thanh Pham
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
| | - Shohei Kuroda
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
| | - Yeni Khairina
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan; Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Thailand.
| |
Collapse
|
2
|
Cruz FVDS, Barbosa da Costa N, Juneau P. Non-pathogenic microbiome associated to aquatic plants and anthropogenic impacts on this interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174663. [PMID: 38992379 DOI: 10.1016/j.scitotenv.2024.174663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The microbiota associated with aquatic plants plays a crucial role in promoting plant growth and development. The structure of the plant microbiome is shaped by intricate interactions among hosts, microbes, and environmental factors. Consequently, anthropogenic pressures that disrupt these interactions can indirectly impact the ecosystem services provided by aquatic plants, such as CO2 fixation, provision of food resources, shelter to animals, nutrient cycling, and water purification. Presently, studies on plant-microbiota interactions primarily focus on terrestrial hosts and overlook aquatic environments with their unique microbiomes. Therefore, there is a pressing need for a comprehensive understanding of plant microbiomes in aquatic ecosystems. This review delves into the overall composition of the microbiota associated with aquatic plant, with a particular emphasis on bacterial communities, which have been more extensively studied. Subsequently, the functions provided by the microbiota to their aquatic plants hosts are explored, including the acquisition and mobilization of nutrients, production of auxin and related compounds, enhancement of photosynthesis, and protection against biotic and abiotic stresses. Additionally, the influence of anthropogenic stressors, such as climate change and aquatic contamination, on the interaction between microbiota and aquatic plants is discussed. Finally, knowledge gaps are highlighted and future directions in this field are suggested.
Collapse
Affiliation(s)
- Fernanda Vieira da Silva Cruz
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal Succ. Centre-Ville, H3C 3P8 Montréal, QC, Canada
| | - Naíla Barbosa da Costa
- Institut national de la recherche scientifique - Centre Eau Terre Environnement, 490 Couronne St, Québec City, Québec G1K 9A9, Canada
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal Succ. Centre-Ville, H3C 3P8 Montréal, QC, Canada.
| |
Collapse
|
3
|
Yang J, Zhao X, Wang X, Xia M, Ba S, Lim BL, Hou H. Biomonitoring of heavy metals and their phytoremediation by duckweeds: Advances and prospects. ENVIRONMENTAL RESEARCH 2024; 245:118015. [PMID: 38141920 DOI: 10.1016/j.envres.2023.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Heavy metals (HMs) contamination of water bodies severely threatens human and ecosystem health. There is growing interest in the use of duckweeds for HMs biomonitoring and phytoremediation due to their fast growth, low cultivation costs, and excellent HM uptake efficiency. In this review, we summarize the current state of knowledge on duckweeds and their suitability for HM biomonitoring and phytoremediation. Duckweeds have been used for phytotoxicity assays since the 1930s. Some toxicity tests based on duckweeds have been listed in international guidelines. Duckweeds have also been recognized for their ability to facilitate HM phytoremediation in aquatic environments. Large-scale screening of duckweed germplasm optimized for HM biomonitoring and phytoremediation is still essential. We further discuss the morphological, physiological, and molecular effects of HMs on duckweeds. However, the existing data are clearly insufficient, especially in regard to dissection of the transcriptome, metabolome, proteome responses and molecular mechanisms of duckweeds under HM stresses. We also evaluate the influence of environmental factors, exogenous substances, duckweed community composition, and HM interactions on their HM sensitivity and HM accumulation, which need to be considered in practical application scenarios. Finally, we identify challenges and propose approaches for improving the effectiveness of duckweeds for bioremediation from the aspects of selection of duckweed strain, cultivation optimization, engineered duckweeds. We foresee great promise for duckweeds as phytoremediation agents, providing environmentally safe and economically efficient means for HM removal. However, the primary limiting issue is that so few researchers have recognized the outstanding advantages of duckweeds. We hope that this review can pique the interest and attention of more researchers.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaoyu Wang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Sang Ba
- Center for Carbon Neutrality in the Third Pole of the Earth, Tibet University, Lhasa, 850000, China; Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, 850000, China.
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Saimee Y, Butdee W, Boonmak C, Duangmal K. Actinomycetospora lemnae sp. nov., A Novel Actinobacterium Isolated from Lemna aequinoctialis Able to Enhance Duckweed Growth. Curr Microbiol 2024; 81:92. [PMID: 38315241 DOI: 10.1007/s00284-023-03595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Duckweed-associated actinobacteria are co-existing microbes that affect duckweed growth and adaptation. In this study, we aimed to report a novel actinobacterium species and explore its ability to enhance duckweed growth. Strain DW7H6T was isolated from duckweed, Lemna aequinoctialis. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that the strain was most closely related to Actinomycetospora straminea IY07-55T (99.0%), Actinomycetospora chibensis TT04-21T (98.9%), Actinomycetospora lutea TT00-04T (98.8%) and Actinomycetospora callitridis CAP 335T (98.4%). Chemotaxonomic and morphological characteristics of strain DW7H6T were consistent with members of the genus Actinomycetospora, while average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the draft genomes of this strain and its closely related type strains were below the proposed threshold values used for species discrimination. Based on chemotaxonomic, phylogenetic, phenotypic, and genomic evidence obtained, we describe a novel Actinomycetospora species, for which the name Actinomycetospora lemnae sp. nov. is proposed. The type strain is DW7H6T (TBRC 15165T, NBRC 115294T). Additionally, the duckweed-associated actinobacterium strain DW7H6T was able to enhance duckweed growth when compared to the control, in which the number of fronds and biomass dry weight were increased by up to 1.4 and 1.3 fold, respectively. Moreover, several plant-associated gene features in the genome of strain DW7H6T potentially involved in plant-microbe interactions were identified.
Collapse
Affiliation(s)
- Yuparat Saimee
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Waranya Butdee
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Chanita Boonmak
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, 10900, Thailand
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, 10900, Thailand.
| |
Collapse
|
5
|
Flores-Félix JD, Gonçalves AC, Meirinho S, Nunes AR, Alves G, Garcia-Viguera C, Moreno DA, Silva LR. Differential response of blueberry to the application of bacterial inoculants to improve yield, organoleptic qualities and concentration of bioactive compounds. Microbiol Res 2024; 278:127544. [PMID: 37988818 DOI: 10.1016/j.micres.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
The application of bacterial biofortifiers is an increasingly common technique. In recent years, some strains have been shown to improve the nutraceutical qualities of crops. This work analyses the impact of biofortification with 3 bacterial strains of the genera Rhizobium, Paenibacillus and Lactiplantibacillus on the nutritional characteristics and organic composition of blueberry in Portugal. Paenibacillus sp. VMFR46 treatment showed increase of 71.36 % and 79.88 % in total production. Biofortified treatments were able to increase Brix degree, maturity index (up to 48.05 % for cv. Legacy and up to 26.04 % for cv. Duke) and CIEL*a*b* index respect to uninoculated control. In this way, (poly)phenolic compounds concentration increased in biofortified treatment, and their (poly)phenolic profile was modified, some compounds such as myricetin aglycone or myricetin derivative are exclusive of the fruits from biofortified plants, with increases in (poly)phenolic concentrations related with R. laguerreae PEPV16 or Paenibacillus sp. VMFR46 inoculation in cv. Legacy. These modifications resulted in the improvement of the nutraceutical characteristics of the fruits obtained.
Collapse
Affiliation(s)
- José David Flores-Félix
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| | - Ana Carolina Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Sara Meirinho
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Ana Raquel Nunes
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, 3004-504 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Cristina Garcia-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo -25, 30100 Murcia, Spain
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo -25, 30100 Murcia, Spain
| | - Luís R Silva
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Guarda, Portugal; University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua, Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
6
|
Boonmak C, Kettongruang S, Buranathong B, Morikawa M, Duangmal K. Duckweed-associated bacteria as plant growth-promotor to enhance growth of Spirodela polyrhiza in wastewater effluent from a poultry farm. Arch Microbiol 2023; 206:43. [PMID: 38148332 DOI: 10.1007/s00203-023-03778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Duckweed has been highlighted as an invaluable resource because of its abilities to remove nitrogen and phosphorus from wastewater coupling with the production of high starch/protein-containing plant biomass. Duckweed recruits microbes and particularly forms a stable "core" bacterial microbiota, which greatly reduces the colonization efficiency of plant growth-promoting bacteria (PGPB). In this study, natural duckweeds were enriched in a sterilized-partially treated wastewater effluent from a poultry farm. After 24 days of cultivation, the duckweed-associated bacteria (DAB) were isolated and evaluated for their plant growth-promoting (PGP) potentials by co-cultivation with axenic Spirodela polyrhiza. Ten species were found in more than one location and could be considered candidates for the stable "core" DAB. Among them, all isolates of Acinetobacter soli, Acidovorax kalamii, Brevundimonas vesicularis, Pseudomonas toyotomiensis, and Shinella curvata increased duckweed growth in Hoagland medium. The highest PGP ability was observed in Sh. curvata W12-8 (with EPG value of 208.72%), followed by Paracoccus marcusii W7-16 (171.31%), Novosphingobium subterraneum W5-13 (156.96%), and Ac. kalamii W7-18 (156.96%). However, the highest growth promotion in the wastewater was observed when co-cultured with W7-16, which was able to increase biomass dry weight and root length of duckweed by 3.17 and 2.26 folds, respectively.
Collapse
Affiliation(s)
- Chanita Boonmak
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Biodiversity Center Kasetsart University (BDCKU), Kasetsart University, Bangkok, 10900, Thailand.
- Duckweed Holobiont Resource and Research Center (DHbRC), Kasetsart University, Bangkok, 10900, Thailand.
| | - Sirapat Kettongruang
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Buranaporn Buranathong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Kasetsart University, Bangkok, 10900, Thailand
- Duckweed Holobiont Resource and Research Center (DHbRC), Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
7
|
Maissour A, Bouqadida M, Oualili H, El Omari R, Belfaiza M, Makroum K. Characterization of the physico-chemical properties of the natural habitat and in vitro culture effects on the biochemistry, proliferation and morphology of Lemna minuta. BMC PLANT BIOLOGY 2023; 23:234. [PMID: 37138221 PMCID: PMC10155455 DOI: 10.1186/s12870-023-04249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
In this study, the ecological conditions of the natural habitat of Lemna minuta Kunth in Morocco were investigated, and the impact of five synthetic growth media (Murashige-Skoog (MS), Schenk-Hildebrand (SH), Hoagland medium (HM), 10X Algal Assay Procedure (AAP), and Swedish Standard Institute medium (SIS)) on the morphophysiological and biochemical parameters was analysed. The morphophysiological parameters included root length, frond surface area, and fresh weight, while the biochemical parameters included photosynthetic pigments, carbohydrates, and protein content. The study was conducted in vitro in two phases: an uncontrolled aeration system (Phase I) and a controlled aeration system (Phase II).The results showed that the pH, conductivity, salinity, and ammonium levels in the natural habitat were within the optimal range for duckweed growth. The measured orthophosphate concentrations were higher compared to previous observations, while the recorded chemical oxygen demand values were low. The study also revealed a significant effect of the culture medium composition on the morphophysiological and biochemical parameters of the duckweed. The fresh weight biomass, relative growth rate in fronds, relative growth rate in surface area, root length, protein content, carbohydrates, chlorophyll (a), chlorophyll (b), total chlorophyll, carotenoids, and the chlorophyll (a/b) ratio were all affected by the culture medium.The most accurate regression models described the growth index GI(F) based on time and in vitro culture conditions in both phases. In Phase I, the best models for MS, SIS, AAP, and SH media were linear, weighted quadratic, cubic, and weighted cubic, respectively. In Phase II, the best models for all growth media were linear. The time coefficients (in days) for Phase II were 0.321, 0.547, 1.232, 1.470, and 0.306 for AAP, HM, MS, SH, and SIS, respectively.Comparing the morphophysiological and biochemical parameters of fronds from different media and analysing the regression model results showed that the SH and MS media were the best among the tested media for the in vitro culture of L. minuta in controlled aeration conditions. However, further research is needed to develop new synthetic media that best promote the growth and maintenance of this duckweed in long-term culture.
Collapse
Affiliation(s)
- Abdellah Maissour
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco.
| | - Mohammed Bouqadida
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Hanane Oualili
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Redouane El Omari
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Malika Belfaiza
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| | - Kacem Makroum
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL-CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, P.O. Box 20, El Jadida, M-24000, Morocco
| |
Collapse
|
8
|
Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. A Look at Plant-Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:1668. [PMID: 37111891 PMCID: PMC10145503 DOI: 10.3390/plants12081668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.
Collapse
Affiliation(s)
- Lorena Jacqueline Gómez-Godínez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Javier Ireta-Moreno
- Centro de Investigación Regional Pacífico Centro, Centro Altos Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 2470, Jalisco, Mexico
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| |
Collapse
|
9
|
Mghazli N, Bruneel O, Zouagui R, Hakkou R, Sbabou L. Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front Microbiol 2022; 13:1026991. [PMID: 36590425 PMCID: PMC9798287 DOI: 10.3389/fmicb.2022.1026991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morocco holds the vast majority of the world's phosphate reserves, but due to the processes involved in extracting and commercializing these reserves, large quantities of de-structured, nutritionally deficient mine phosphate wastes are produced each year. In a semi-arid climate, these wastes severely hamper plant growth and development leading to huge unvegetated areas. Soil indigenous Plant Growth-Promoting Bacteria (PGPB) play a pivotal role in restauration of these phosphate mining wastes by revegetation, by increasing plants development, soil functioning, and nutrient cycling. The development of a vegetative cover above the degraded phosphate wastes, could stabilize and reintegrate these wastes in the surrounding environment. The current study's objectives were to isolate, characterize, and identify indigenous bacterial strains, and test their PGP activity in vitro and, for the best-performing strains in planta, in order to assess their potential for acting as biofertilizers. A quantitative test for the synthesis of auxin and the production of siderophores as well as a qualitative test for the solubilization of phosphate were performed on all isolated bacterial strains. The production of hydrogen cyanide (HCN), exopolysaccharides (EPS), and enzymes were also examined. Three bacteria, selected among the best PGPB of this study, were tested in planta to determine whether such indigenous bacteria could aid plant growth in this de-structured and nutrient-poor mining soil. Using 16S rRNA gene sequencing, 41 bacterial strains were isolated and 11 genera were identified: Acinetobacter, Agrococcus, Bacillus, Brevibacterium, Microbacterium, Neobacillus, Paenibacillus, Peribacillus, Pseudarthrobacter, Stenotrophomonas, and Raoultella. Among the three best performing bacteria (related to Bacillus paramycoides, Brevibacterium anseongense, and Stenotrophomonas rhizophila), only Stenotrophomonas rhizophila and Brevibacterium anseongense were able to significantly enhance Lupinus albus L. growth. The best inoculation results were obtained using the strain related to Stenotrophomonas rhizophila, improving the plant's root dry weight and chlorophyll content. This is also, to our knowledge, the first study to show a PGP activity of Brevibacterium anseongense.
Collapse
Affiliation(s)
- Najoua Mghazli
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco,HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Odile Bruneel
- HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Rahma Zouagui
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Hakkou
- Laboratoire des Matériaux Innovants, Energie et Développement Durable (IMED)_Laboratory, Faculty of Science and Technology, Cadi Ayyad University, Marrakesh, Morocco,Geology & Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Laila Sbabou
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco,*Correspondence: Laila Sbabou,
| |
Collapse
|
10
|
Bunyoo C, Roongsattham P, Khumwan S, Phonmakham J, Wonnapinij P, Thamchaipenet A. Dynamic Alteration of Microbial Communities of Duckweeds from Nature to Nutrient-Deficient Condition. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212915. [PMID: 36365369 PMCID: PMC9658847 DOI: 10.3390/plants11212915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/12/2023]
Abstract
Duckweeds live with complex assemblages of microbes as holobionts that play an important role in duckweed growth and phytoremediation ability. In this study, the structure and diversity of duckweed-associated bacteria (DAB) among four duckweed subtypes under natural and nutrient-deficient conditions were investigated using V3-V4 16S rRNA amplicon sequencing. High throughput sequencing analysis indicated that phylum Proteobacteria was predominant in across duckweed samples. A total of 24 microbial genera were identified as a core microbiome that presented in high abundance with consistent proportions across all duckweed subtypes. The most abundant microbes belonged to the genus Rhodobacter, followed by other common DAB, including Acinetobacter, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Pseudomonas. After nutrient-deficient stress, diversity of microbial communities was significantly deceased. However, the relative abundance of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pelomonas, Roseateles and Novosphingobium were significantly enhanced in stressed duckweeds. Functional prediction of the metagenome data displayed the relative abundance of essential pathways involved in DAB colonization, such as bacterial motility and biofilm formation, as well as biodegradable ability, such as benzoate degradation and nitrogen metabolism, were significantly enriched under stress condition. The findings improve the understanding of the complexity of duckweed microbiomes and facilitate the establishment of a stable microbiome used for co-cultivation with duckweeds for enhancement of biomass and phytoremediation under environmental stress.
Collapse
Affiliation(s)
- Chakrit Bunyoo
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Peerapat Roongsattham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Sirikorn Khumwan
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Juthaporn Phonmakham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
11
|
Makino A, Nakai R, Yoneda Y, Toyama T, Tanaka Y, Meng XY, Mori K, Ike M, Morikawa M, Kamagata Y, Tamaki H. Isolation of Aquatic Plant Growth-Promoting Bacteria for the Floating Plant Duckweed (Lemna minor). Microorganisms 2022; 10:microorganisms10081564. [PMID: 36013982 PMCID: PMC9416352 DOI: 10.3390/microorganisms10081564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) can exert beneficial growth effects on their host plants. Little is known about the phylogeny and growth-promoting mechanisms of PGPB associated with aquatic plants, although those of terrestrial PGPB have been well-studied. Here, we report four novel aquatic PGPB strains, MRB1–4 (NITE P-01645–P-01648), for duckweed Lemna minor from our rhizobacterial collection isolated from Lythrum anceps. The number of L. minor fronds during 14 days co-culture with the strains MRB1–4 increased by 2.1–3.8-fold, compared with an uninoculated control; the plant biomass and chlorophyll content in co-cultures also increased. Moreover, all strains possessed an indole-3-acetic acid production trait in common with a plant growth-promoting trait of terrestrial PGPB. Phylogenetic analysis showed that three strains, MRB-1, -3, and -4, were affiliated with known proteobacterial genera (Bradyrhizobium and Pelomonas); this report is the first to describe a plant-growth promoting activity of Pelomonas members. The gammaproteobacterial strain MRB2 was suggested to be phylogenetically novel at the genus level. Under microscopic observation, the Pelomonas strain MRB3 was epiphytic and adhered to both the root surfaces and fronds of duckweed. The duckweed PGPB obtained here could serve as a new model for understanding unforeseen mechanisms behind aquatic plant-microbe interactions.
Collapse
Affiliation(s)
- Ayaka Makino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Hokkaido, Japan; (A.M.); (R.N.)
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Hokkaido, Japan; (A.M.); (R.N.)
| | - Yasuko Yoneda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
| | - Tadashi Toyama
- Graduate School of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Yasuhiro Tanaka
- Graduate School of Life and Environmental Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan;
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
| | - Kazuhiro Mori
- Graduate School of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Michihiko Ike
- Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan;
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Correspondence: ; Tel.: +81-29-861-6592
| |
Collapse
|
12
|
Katsenios N, Andreou V, Sparangis P, Djordjevic N, Giannoglou M, Chanioti S, Kasimatis CN, Kakabouki I, Leonidakis D, Danalatos N, Katsaros G, Efthimiadou A. Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci Rep 2022; 12:11598. [PMID: 35804096 PMCID: PMC9270457 DOI: 10.1038/s41598-022-16044-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
The use of plant growth promoting bacteria (PGPB) is increasingly gaining acceptance from all the stakeholders of the agricultural production. Different strains of PGPB species had been found to have a vast variety of mechanisms of action, while at the same time, affect differently a variety of crops. This study investigated the effectiveness of ten PGPB strains, on sweet corn cultivation under Mediterranean soil and climatic conditions. A field experiment that followed a completely randomized design was conducted at the region of Attica at Oropos. The results indicated that B. mojavensis increased yield by 16%, B. subtilis by 13.8%, B. pumilus by 11.8% and B. pseudomycoides by 9.8% compared to control. In addition, the harvested grains of the plants treated with B. mojavensis, B. subtilis and B. pumilus presented the highest values of protein and fiber content. Moreover, in most of the cases, high values of photosynthetic rate, transpiration rate and stomatal conductance during the cultivation period, resulted in high productivity. Regarding the texture, the size, the sphericity and the ash content of corn grains, it was found that they were not influenced by the application of different treatments of PGPB. The use of certain strains of PGPB, under specific soil and climatic conditions could contribute to better understand which strains are better suited to certain crops.
Collapse
Affiliation(s)
- Nikolaos Katsenios
- Department of Soil Science of Athens, Institute of Soil and Water Resources, Hellenic Agricultural Organization - Demeter, 14123, LycovrissiAttica, Greece
| | - Varvara Andreou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi, 14123, Attica, Greece
| | - Panagiotis Sparangis
- Department of Soil Science of Athens, Institute of Soil and Water Resources, Hellenic Agricultural Organization - Demeter, 14123, LycovrissiAttica, Greece
| | | | - Marianna Giannoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi, 14123, Attica, Greece
| | - Sofia Chanioti
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi, 14123, Attica, Greece
| | | | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Dimitriοs Leonidakis
- Laboratory of Agronomy and Applied Crop Physiology, Department of Agriculture Crop Production and Rural Environment, Fytokou St., University of Thessaly, 38446, Volos, Greece
| | - Nicholaos Danalatos
- Laboratory of Agronomy and Applied Crop Physiology, Department of Agriculture Crop Production and Rural Environment, Fytokou St., University of Thessaly, 38446, Volos, Greece
| | - George Katsaros
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi, 14123, Attica, Greece
| | - Aspasia Efthimiadou
- Department of Soil Science of Athens, Institute of Soil and Water Resources, Hellenic Agricultural Organization - Demeter, 14123, LycovrissiAttica, Greece.
| |
Collapse
|
13
|
Cai XY, Xu M, Zhu YX, Shi Y, Wang HW. Removal of Dinotefuran, Thiacloprid, and Imidaclothiz Neonicotinoids in Water Using a Novel Pseudomonas monteilii FC02-Duckweed ( Lemna aequinoctialis) Partnership. Front Microbiol 2022; 13:906026. [PMID: 35756054 PMCID: PMC9218866 DOI: 10.3389/fmicb.2022.906026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Neonicotinoids (NEOs) are the most widely used insecticides in the world and pose a serious threat to aquatic ecosystems. The combined use of free-floating aquatic plants and associated microorganisms has a tremendous potential for remediating water contaminated by pesticides. The aim of this study was to determine whether plant growth-promoting bacteria (PGPB) could enhance the phytoremediation efficiency of duckweed (Lemna aequinoctialis) in NEO-contaminated water. A total of 18 different bacteria were isolated from pesticide-stressed agricultural soil. One of the isolates, Pseudomonas monteilii FC02, exhibited an excellent ability to promote duckweed growth and was selected for the NEO removal experiment. The influence of strain FC02 inoculation on the accumulation of three typical NEOs (dinotefuran, thiacloprid, and imidaclothiz) in plant tissues, the removal efficiency in water, and plant growth parameters were evaluated during the 14-day experimental period. The results showed that strain FC02 inoculation significantly (p < 0.05) increased plant biomass production and NEO accumulation in plant tissues. The maximum NEO removal efficiencies were observed in the inoculated duckweed treatment after 14 days, with 92.23, 87.75, and 96.42% for dinotefuran, thiacloprid, and imidaclothiz, respectively. This study offers a novel view on the bioremediation of NEOs in aquatic environments by a PGPB–duckweed partnership.
Collapse
Affiliation(s)
- Xiao-Yu Cai
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Yu-Xuan Zhu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Ying Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| | - Hong-Wei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China.,Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing, China
| |
Collapse
|
14
|
Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J. Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 2022; 27:molecules27041407. [PMID: 35209196 PMCID: PMC8880754 DOI: 10.3390/molecules27041407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St., Cairo 12613, Egypt
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
15
|
Genome-wide identification of bacterial colonization and fitness determinants on the floating macrophyte, duckweed. Commun Biol 2022; 5:68. [PMID: 35046504 PMCID: PMC8770550 DOI: 10.1038/s42003-022-03014-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractBacterial communities associated with aquatic macrophytes largely influence host primary production and nutrient cycling in freshwater environments; however, little is known about how specific bacteria migrate to and proliferate at this unique habitat. Here, we separately identified bacterial genes involved in the initial colonization and overall fitness on plant surface, using the genome-wide transposon sequencing (Tn-seq) of Aquitalea magnusonii H3, a plant growth-promoting bacterium of the floating macrophyte, duckweed. Functional annotation of identified genes indicated that initial colonization efficiency might be simply explained by motility and cell surface structure, while overall fitness was associated with diverse metabolic and regulatory functions. Genes involved in lipopolysaccharides and type-IV pili biosynthesis showed different contributions to colonization and fitness, reflecting their metabolic cost and profound roles in host association. These results provide a comprehensive genetic perspective on aquatic-plant-bacterial interactions, and highlight the potential trade-off between bacterial colonization and proliferation abilities on plant surface.
Collapse
|
16
|
Demmig-Adams B, Polutchko S, Zenir M, Fourounjian P, Stewart J, López-pozo M, Adams W. Intersections: photosynthesis, abiotic stress, and the plant microbiome. PHOTOSYNTHETICA 2022; 60:59-69. [PMID: 39649006 PMCID: PMC11559482 DOI: 10.32615/ps.2021.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 12/10/2024]
Abstract
Climate change impacts environmental conditions that affect photosynthesis. This review examines the effect of combinations of elevated atmospheric CO2, long photoperiods, and/or unfavorable nitrogen supply. Under moderate stress, perturbed plant source-sink ratio and redox state can be rebalanced but may result in reduced foliar protein content in C3 plants and a higher carbon-to-nitrogen ratio of plant biomass. More severe environmental conditions can trigger pronounced photosynthetic downregulation and impair growth. We comprehensively evaluate available evidence that microbial partners may be able to support plant productivity under challenging environmental conditions by providing (1) nutrients, (2) an additional carbohydrate sink, and (3) regulators of plant metabolism, especially plant redox state. In evaluating the latter mechanism, we note parallels to metabolic control in photosymbioses and microbial regulation of human redox biology.
Collapse
Affiliation(s)
- B. Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - S.K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - M.C. Zenir
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - P. Fourounjian
- International Lemna Association, Denville, NJ 07834, USA
| | - J.J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - M. López-pozo
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - W.W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
17
|
Demmig-Adams B, López-Pozo M, Polutchko SK, Fourounjian P, Stewart JJ, Zenir MC, Adams WW. Growth and Nutritional Quality of Lemnaceae Viewed Comparatively in an Ecological and Evolutionary Context. PLANTS (BASEL, SWITZERLAND) 2022; 11:145. [PMID: 35050033 PMCID: PMC8779320 DOI: 10.3390/plants11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna's response to elevated CO2 was evaluated in the context of the source-sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source-sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant-microbe interaction, for which duckweeds have a high propensity.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48049 Bilbao, Spain;
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Paul Fourounjian
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
- International Lemna Association, Denville, NJ 07832, USA
| | - Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Madeleine C. Zenir
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| |
Collapse
|
18
|
Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:28-38. [PMID: 34622686 DOI: 10.1094/mpmi-06-21-0157-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Duckweeds (Lemnaceae) are representative producers in fresh aquatic ecosystems and also yield sustainable biomass for animal feeds, human foods, and biofuels, and contribute toward effective wastewater treatment; thus, enhancing duckweed productivity is a critical challenge. Plant-growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants; however, duckweed-PGPB interactions remain unclear and no previous study has investigated the molecular mechanisms underlying duckweed-PGPB interaction. Herein, a PGPB, Ensifer sp. strain SP4, was newly isolated from giant duckweed (Spirodela polyrhiza), and the interactions between S. polyrhiza and SP4 were investigated through physiological, biochemical, and metabolomic analyses. In S. polyrhiza and SP4 coculture, SP4 increased the nitrogen (N), chlorophyll, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents and the photosynthesis rate of S. polyrhiza by 2.5-, 2.5-, 2.7-, and 2.4-fold, respectively. Elevated photosynthesis increased the relative growth rate and biomass productivity of S. polyrhiza by 1.5- and 2.7-fold, respectively. Strain SP4 significantly altered the metabolomic profile of S. polyrhiza, especially its amino acid profile. N stable isotope analysis revealed that organic N compounds were transferred from SP4 to S. polyrhiza. These N compounds, particularly glutamic acid, possibly triggered the increase in photosynthetic and growth activities. Accordingly, we propose a new model for the molecular mechanism underlying S. polyrhiza growth promotion by its associated bacteria Ensifer sp. SP4, which occurs through enhanced N compound metabolism and photosynthesis. Our findings show that Ensifer sp. SP4 is a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture of S. polyrhiza.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yasuhiro Tanaka
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
19
|
Romano LE, Aronne G. The World Smallest Plants ( Wolffia Sp.) as Potential Species for Bioregenerative Life Support Systems in Space. PLANTS (BASEL, SWITZERLAND) 2021; 10:1896. [PMID: 34579428 PMCID: PMC8470744 DOI: 10.3390/plants10091896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
To colonise other planets, self-sufficiency of space missions is mandatory. To date, the most promising technology to support long-duration missions is the bioregenerative life support system (BLSS), in which plants as autotrophs play a crucial role in recycling wastes and producing food and oxygen. We reviewed the scientific literature on duckweed (Lemnaceae) and reported available information on plant biological traits, nutritional features, biomass production, and space applications, especially of the genus Wolffia. Results confirmed that the smallest existing higher plants are the best candidate for space BLSS. We discussed needs for further research before criticalities to be addressed to finalise the adoption of Wolffia species for space missions.
Collapse
Affiliation(s)
- Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | | |
Collapse
|
20
|
Petersen F, Demann J, Restemeyer D, Ulbrich A, Olfs HW, Westendarp H, Appenroth KJ. Influence of the Nitrate-N to Ammonium-N Ratio on Relative Growth Rate and Crude Protein Content in the Duckweeds Lemna minor and Wolffiella hyalina. PLANTS (BASEL, SWITZERLAND) 2021; 10:1741. [PMID: 34451786 PMCID: PMC8399352 DOI: 10.3390/plants10081741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
In order to produce protein-rich duckweed for human and animal consumption, a stable cultivation process, including an optimal nutrient supply for each species, must be implemented. Modified nutrient media, based on the N-medium for duckweed cultivation, were tested on the relative growth rate (RGR) and crude protein content (CPC) of Lemna minor and Wolffiella hyalina, as well as the decrease of nitrate-N and ammonium-N in the media. Five different nitrate-N to ammonium-N molar ratios were diluted to 10% and 50% of the original N-medium concentration. The media mainly consisted of agricultural fertilizers. A ratio of 75% nitrate-N and 25% ammonium-N, with a dilution of 50%, yielded the best results for both species. Based on the dry weight (DW), L. minor achieved a RGR of 0.23 ± 0.009 d-1 and a CPC of 37.8 ± 0.42%, while W. hyalina's maximum RGR was 0.22 ± 0.017 d-1, with a CPC of 43.9 ± 0.34%. The relative protein yield per week and m2 was highest at this ratio and dilution, as well as the ammonium-N decrease in the corresponding medium. These results could be implemented in duckweed research and applications if a high protein content or protein yield is the aim.
Collapse
Affiliation(s)
- Finn Petersen
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany; (J.D.); (D.R.); (A.U.); (H.-W.O.); (H.W.)
| | - Johannes Demann
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany; (J.D.); (D.R.); (A.U.); (H.-W.O.); (H.W.)
| | - Dina Restemeyer
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany; (J.D.); (D.R.); (A.U.); (H.-W.O.); (H.W.)
| | - Andreas Ulbrich
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany; (J.D.); (D.R.); (A.U.); (H.-W.O.); (H.W.)
| | - Hans-Werner Olfs
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany; (J.D.); (D.R.); (A.U.); (H.-W.O.); (H.W.)
| | - Heiner Westendarp
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany; (J.D.); (D.R.); (A.U.); (H.-W.O.); (H.W.)
| | - Klaus-Jürgen Appenroth
- Matthias-Schleiden-Institute-Plant Physiology, University of Jena, Dornburger Str. 159, 07743 Jena, Germany;
| |
Collapse
|