1
|
Yang X, Yao L, Yu S, Mu T, Hu Y, He X, Cheng Y, Xu Z. High Stability Hydrogel Magnetic Relaxation Switch Sensor Driven by pH for the Sensitive Detection of Cd 2. Anal Chem 2024; 96:15598-15607. [PMID: 39305236 DOI: 10.1021/acs.analchem.4c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The traditional magnetic relaxation switching (MRS) sensors have excellent sensitivity, but their stability is poor because the magnetic relaxation signal is easily affected by the external magnetic field or environmental oxidation. In this study, a highly stable hydrogel bead-based MRS (Gel-MRS) sensor was established for the accurate and sensitive detection of Cd2+ in rice. A pH-responsive hydrogel bead was applied as a core element for the target stimulus and transverse relaxation signal transduction. The stability experiments showed that the transverse relaxation time (T2) change of the Gel-MRS sensor was one-seventh that of traditional magnetic nanoparticles under an external magnetic field and less than a fifth that of Fe2+/Fe3+ conversion in air. The excellent stability was due to the fact that T2 of the Gel-MRS sensor came from the swelling system mediated by pH rather than the traditional aggregation/dispersion or Fe2+/Fe3+ conversion of magnetic nanoparticles. In addition, the target Cd2+ could exclusively trigger a pH response of the hydrogel beads, altering the T2, thus resulting in excellent relaxation properties (R2 = 56.89) and pH responsiveness of the Gel-MRS sensor. The swelling process of the hydrogel beads followed quasi-second-order dynamics. The Gel-MRS sensor demonstrated a remarkable limit of detection as low as 0.009 ng/mL for Cd2+, with a linear range of 0.01-5 ng/mL. The excellent stability and sensitivity made the Gel-MRS sensor have great application potential in food and environmental detection.
Collapse
Affiliation(s)
- Xingyu Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Yao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Shaoyi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Tong Mu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Yudie Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Xiaohong He
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| |
Collapse
|
2
|
Zhang PP, Ding GC, Tao CY, Zhang L, Wang YX, Yuan QY, Zhang SM, Wang LP. Levels of trace metals and their impact on oocyte: A review. Taiwan J Obstet Gynecol 2024; 63:307-311. [PMID: 38802192 DOI: 10.1016/j.tjog.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
Trace metals play a vital role in a variety of biological processes, but excessive amounts can be toxic and are receiving increasing attention. Trace metals in the environment are released from natural sources, such as rock weathering, volcanic eruptions, and other human activities, such as industrial emissions, mineral extraction, and vehicle exhaust. Lifestyle, dietary habits and environmental quality are the main sources of human exposure to trace metals, which play an important role in inducing human reproductive infertility. The purpose of this review is to summarize the distribution of various trace metals in oocyte and to identify the trace metals that may cause oocyte used in the design and execution of toxicological studies.
Collapse
Affiliation(s)
- Ping-Ping Zhang
- Yangzhou Maternity and Child Health Care Hospital, Yangzhou, Jiangsu, China
| | - Gui-Chun Ding
- Yangzhou Maternity and Child Health Care Hospital, Yangzhou, Jiangsu, China
| | - Chen-Yue Tao
- School of Nursing·School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Zhang
- Yangzhou Maternity and Child Health Care Hospital, Yangzhou, Jiangsu, China
| | - Yi-Xiong Wang
- Yangzhou Maternity and Child Health Care Hospital, Yangzhou, Jiangsu, China
| | | | - Sheng-Min Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China.
| | - Li-Ping Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
3
|
Motta CM, Rosati L, Cretì P, Montinari MR, Denre P, Simoniello P, Fogliano C, Scudiero R, Avallone B. Histopathological effects of long-term exposure to realistic concentrations of cadmium in the hepatopancreas of Sparus aurata juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106858. [PMID: 38325058 DOI: 10.1016/j.aquatox.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
In recent decades, cadmium has emerged as an environmental stressor in aquatic ecosystems due to its persistence and toxicity. It can enter water bodies from various natural and anthropogenic sources and, once introduced into aquatic systems, can accumulate in sediments and biota, leading to bioaccumulation and biomagnification in the food chain. For this reason, the effects of cadmium on aquatic life remain an area of ongoing research and concern. In this paper, a multidisciplinary approach was used to assess the effects of long-term exposure to an environmental concentration on the hepatopancreas of farmed juveniles of sea bream, Sparus aurata. After determining metal uptake, metallothionein production was assessed to gain insight into the organism's defence response. The effects were also assessed by histological and ultrastructural analyses. The results indicate that cadmium accumulates in the hepatopancreas at significant concentrations, inducing structural and functional damage. Despite the parallel increase in metallothioneins, fibrosis, alterations in carbohydrate distribution and endocrine disruption were also observed. These effects would decrease animal fitness although it did not translate into high mortality or reduced growth. This could depend on the fact that the animals were farmed, protected from the pressure deriving from having to search for food or escape from predators. Not to be underestimated is the return to humans, as this species is edible. Understanding the behaviour of cadmium in aquatic systems, its effects at different trophic levels and the potential risks to human health from the consumption of contaminated seafood would therefore be essential for informed environmental management and policy decisions.
Collapse
Affiliation(s)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Rosa Montinari
- Chair of History of Medicine, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Fogliano C, Carotenuto R, Cirino P, Panzuto R, Ciaravolo M, Simoniello P, Sgariglia I, Motta CM, Avallone B. Benzodiazepine Interference with Fertility and Embryo Development: A Preliminary Survey in the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2024; 25:1969. [PMID: 38396658 PMCID: PMC10888474 DOI: 10.3390/ijms25041969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Psychotropic drugs and benzodiazepines are nowadays among the primary substances of abuse. This results in a large and constant release into aquatic environments where they have potentially harmful effects on non-target organisms and, eventually, human health. In the last decades, evidence has been collected on the possible interference of benzodiazepines with reproductive processes, but data are few and incomplete. In this study, the possible negative influence of delorazepam on fertilization and embryo development has been tested in Paracentrotus lividus, a key model organism in studies of reproduction and embryonic development. Sperm, eggs, or fertilized eggs have been exposed to delorazepam at three concentrations: 1 μg/L (environmentally realistic), 5 μg/L, and 10 μg/L. Results indicate that delorazepam reduces the fertilizing capacity of male and female gametes and interferes with fertilization and embryo development. Exposure causes anatomical anomalies in plutei, accelerates/delays development, and alters the presence and distribution of glycoconjugates such as N-Acetyl-glucosamine, α-linked fucose, and α-linked mannose in both morulae and plutei. These results should attract attention to the reproductive fitness of aquatic species exposed to benzodiazepines and pave the way for further investigation of the effects they may exert on human fertility. The presence of benzodiazepines in the aquatic environment raises concerns about the reproductive well-being of aquatic species. Additionally, it prompts worries regarding potential impacts on human fertility due to the excessive use of anxiolytics.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Paola Cirino
- Department of Conservation of Marine Animals and Public Engagement, Anton Dohrn Zoological Station, 80122 Naples, Italy; (P.C.); (R.P.)
| | - Raffaele Panzuto
- Department of Conservation of Marine Animals and Public Engagement, Anton Dohrn Zoological Station, 80122 Naples, Italy; (P.C.); (R.P.)
| | - Martina Ciaravolo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80133 Naples, Italy;
| | - Ilaria Sgariglia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| |
Collapse
|
5
|
Yang J, Guo Y, Hu J, Bao Z, Wang M. A metallothionein gene from hard clam Meretrix meretrix: Sequence features, expression patterns, and metal tolerance activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105057. [PMID: 37708948 DOI: 10.1016/j.dci.2023.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Metallothioneins (MTs) are low-molecular weight cytoplasmic heavy metal binding proteins. MTs can regulate the concentration of essential or non-essential metals in organisms, and have many important biological functions, including detoxification, trace element metabolism, and anti-oxidation. In the present study, we cloned and characterized a metallothionein gene (designated as MmMT) from the hard clam Meretrix meretrix. The complete cDNA sequence of MmMT contained an open reading frame (ORF) of 629 bp, which encoded a protein of 76 amino acids with a predicted molecular mass of 7.66 kDa and a calculated theoretical isoelectric point of 7.24. MmMT is highly similar to previously identified MTs from other species, with typical metallothionein features such as a high cysteine residue content and the absence of histidine and aromatic residues. The mRNA transcripts of MmMT were prevalent in all the tested tissues, and the expression levels of MmMT were highest in the hepatopancreas and hemocytes. During the stimulation of Vibrio splendidus, the mRNA transcripts of MmMT in the hepatopancreas and hemocytes were significantly increased. The Escherichia coli overexpressing MmMT performed strong growth in the media supplemented with CdCl2 and CuSO4 compared to the control strains. These results provide useful information for further investigation of the functions of MmMT in metal detoxification and the innate immune system.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China
| | - Ying Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institute, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
6
|
Wu Y, Huang T, Yan X, Xiao J, Ma Z, Luo L, Chen L, Cao J, Tang Z, Wei X, Chen F, Zhu Y, Zhang W, Luo Y. Effects of four hormones on the mitigation of ovarian damage in tilapia (Oreochromis niloticus) after copper and cadmium exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106472. [PMID: 36907724 DOI: 10.1016/j.aquatox.2023.106472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Female tilapia of the Genetic Improvement of Farmed Tilapia (GIFT) strain were selected as an animal model to study the effects of four hormonal drugs in mitigating ovarian damage following exposure to copper and cadmium. After combined exposure to copper and cadmium in aqueous phase for 30 d, tilapia were randomly injected with oestradiol (E2), human chorionic gonadotropin (HCG), luteinizing hormone releasing hormone (LHRH), or coumestrol and raised in clear water for 7 d Ovarian samples were collected after combined exposure to heavy metals for 30 d and after recovery for 7 d Gonadosomatic index (GSI), copper and cadmium levels in the ovary, reproductive hormone levels in serum, and mRNA expression of key reproductive regulatory factors were determined. After 30 d of exposure to the combined copper and cadmium in aqueous phase, the Cd2+ content in tilapia ovarian tissue increased by 1,242.46% (p < 0.05), whereas the Cu2+ content, body weight, and GSI decreased by 68.48%, 34.46%, and 60.00% (p < 0.05), respectively. Additionally, E2 hormone levels in tilapia serum decreased by 17.55% (p < 0.05). After drug injection and recovery for 7 d, compared to the negative control group, the HCG group exhibited an increase of 39.57% (p < 0.05) in serum vitellogenin levels. Increases of 49.31%, 42.39%, and 45.91% (p < 0.05) in serum E2 levels were observed, and mRNA expression of 3β-HSD increased by 100.64%, 113.16%, and 81.53% (p < 0.05) in the HCG, LHRH, and E2 groups, respectively. The mRNA expression of CYP11A1 in tilapia ovaries increased by 282.26% and 255.08% (p < 0.05) and mRNA expression of 17β-HSD increased by 109.35% and 111.63% in the HCG and LHRH groups, respectively (p < 0.05). All four hormonal drugs, particularly HCG and LHRH, promoted the restoration of tilapia ovarian function to varying degrees after injury induced by combined exposure to copper and cadmium. This study presents the first hormonal treatment protocol for the mitigation of ovarian damage in fish exposed to combined aqueous phases of copper and cadmium as a strategy to prevent and treat fish ovarian damage induced by heavy metals.
Collapse
Affiliation(s)
- Yijie Wu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Xin Yan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Zhirui Ma
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China; College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Liming Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China; College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Liting Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhanyang Tang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Fuyan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wenchao Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China; College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| |
Collapse
|
7
|
Rosati L, Chianese T, De Gregorio V, Verderame M, Raggio A, Motta CM, Scudiero R. Glyphosate Interference in Follicular Organization in the Wall Lizard Podarcis siculus. Int J Mol Sci 2023; 24:ijms24087363. [PMID: 37108525 PMCID: PMC10138419 DOI: 10.3390/ijms24087363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Glyphosate (Gly) is a broad-spectrum herbicide widely used thanks to its high efficiency and low toxicity. However, evidence exists of its toxic effects on non-target organisms. Among these, the animals inhabiting agricultural fields are particularly threatened. Recent studies demonstrated that exposure to Gly markedly affected the morphophysiology of the liver and testis of the Italian field lizard Podarcis siculus. The present study aimed to investigate the effects of the herbicide on the female reproductive system of this lizard in order to have a full picture of Gly-induced reproductive impairment. The animals were exposed to 0.05 and 0.5 μg/kg of pure Gly by gavage for 3 weeks. The results demonstrated that Gly, at both doses tested, profoundly interfered with ovarian function. It induced germ cells' recruitment and altered follicular anatomy by anticipating apoptotic regression of the pyriform cells. It also induced thecal fibrosis and affected oocyte cytoplasm and zona pellucida organizations. At the functional levels, Gly stimulated the synthesis of estrogen receptors, suggesting a serious endocrine-disrupting effect. Overall, the follicular alterations, combined with those found at the level of the seminiferous tubules in males, suggest serious damage to the reproductive fitness of these non-target organisms, which over time could lead to a decline in survival.
Collapse
Affiliation(s)
- Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Vincenza De Gregorio
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Mariailaria Verderame
- Department of Human, Philosophic and Education Sciences (DISUFF), University of Salerno, 84084 Fisciano, Italy
| | - Anja Raggio
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Chiara Maria Motta
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy
| |
Collapse
|
8
|
Pacchini S, Piva E, Schumann S, Irato P, Pellegrino D, Santovito G. An Experimental Study on Antioxidant Enzyme Gene Expression in Trematomus newnesi ( Boulenger, 1902) Experimentally Exposed to Perfluoro-Octanoic Acid. Antioxidants (Basel) 2023; 12:antiox12020352. [PMID: 36829911 PMCID: PMC9951861 DOI: 10.3390/antiox12020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Antarctica is the continent with the lowest local human impact; however, it is susceptible to pollution from external sources. Emerging pollutants such as perfluoroalkyl substances pose an increasing threat to this environment and therefore require more in-depth investigations to understand their environmental fate and biological impacts. The present study focuses on expression analysis at the transcriptional level of genes coding for four antioxidant enzymes (sod1, sod2, gpx1, and gpx4) in the liver and kidney of an Antarctic fish species, Trematomus newnesi (Boulenger, 1902). mRNA levels were also assessed in fish exposed to 1.5 μg/L of perfluoro-octanoic acid for 10 days. The kidney showed a higher level of expression than the liver in wildlife specimens. In the liver, the treatment induced an increase in gene expression for all the considered enzymes, whereas in the kidney, it induced a general decrease. The obtained results advance the scientific community's understanding of how the potential future presence of anthropogenic contaminants in the Southern Ocean can affect the antioxidant system of Antarctic fishes. The presence of pollutants belonging to the perfluoroalkyl substances in the Southern Ocean needs to be continuously monitored in parallel with this type of research.
Collapse
Affiliation(s)
- Sara Pacchini
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Elisabetta Piva
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Sophia Schumann
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | | |
Collapse
|
9
|
Celis-Hernández O, Ontiveros-Cuadras JF, Ward RD, Girón-García MP, Pérez-Ceballos RY, Canales-Delgadillo JC, Acevedo-Granados IV, Santiago-Pérez S, Armstrong-Altrin JS, Merino-Ibarra M. Biogeochemical behaviour of cadmium in sediments and potential biological impact on mangroves under anthropogenic influence: A baseline survey from a protected nature reserve. MARINE POLLUTION BULLETIN 2022; 185:114260. [PMID: 36368083 DOI: 10.1016/j.marpolbul.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cadmium is a toxic element and its effects are well understood for human health, but its biogeochemical behaviour is still poorly studied and understood in natural ecosystems. This work addresses knowledge gaps concerning its presence, biogeochemical behaviour and impacts in mangrove ecosystems. Through geochemical data and multivariate analysis (i.e., factor and cluster analysis) of data from mangroves of Isla del Carmen, one of the largest extents in Mexico we explored the biogeochemical behaviour of Cd, a potentially toxic element, to identify its anthropogenic sources and interactions with sediments. Pollution indices, including enrichment factor (EF), geo-accumulation index (Igeo), sediment quality guidelines (SQG) and toxicological studies were used to assess the biological impacts of Cd and infer the natural levels tolerated by mangrove trees that form the basis of this natural ecosystem. Our results highlighted that Cd accumulation is driven by interactions between organic matter (OM), sulphur and fine particles; whereas enrichment factor showed values of 6.9 (EF) and 3.5 (EF) associated with point sources and ranged between 2 and 2.9 (EF) in relation to non-point sources. Finally, our geochemical approach revealed that Cd enrichment originates from urban activities and from the poor management of urban residuals.
Collapse
Affiliation(s)
- Omar Celis-Hernández
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, 24157 Ciudad del Carmen, Campeche, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, 03940 Ciudad de México, Mexico.
| | - Jorge Feliciano Ontiveros-Cuadras
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria 04510, Mexico
| | - Raymond D Ward
- Centre for Aquatic Environments, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton BN2 4GJ, United Kingdom; Institute of Agriculture and Environmental Sciences, Estonia University of Life Sciences, Kreutzwaldi 5, EE-51014 Tartu, Estonia; Colégio de Estudos Avançados, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - María Patricia Girón-García
- Laboratorio de Fluorescencia de Rayos X. LANGEM, Instituto de Geología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, 04510 Ciudad de México, Mexico
| | - Rosela Yazmin Pérez-Ceballos
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, 24157 Ciudad del Carmen, Campeche, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, 03940 Ciudad de México, Mexico
| | - Julio César Canales-Delgadillo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, 24157 Ciudad del Carmen, Campeche, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, 03940 Ciudad de México, Mexico
| | - Inna Valeria Acevedo-Granados
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, 24157 Ciudad del Carmen, Campeche, Mexico
| | - Susana Santiago-Pérez
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria 04510, Mexico
| | - John S Armstrong-Altrin
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria 04510, Mexico
| | - Martín Merino-Ibarra
- Unidad Academica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria 04510, Mexico
| |
Collapse
|
10
|
Bakiu R, Pacchini S, Piva E, Schumann S, Tolomeo AM, Ferro D, Irato P, Santovito G. Metallothionein Expression as a Physiological Response against Metal Toxicity in the Striped Rockcod Trematomus hansoni. Int J Mol Sci 2022; 23:12799. [PMID: 36361591 PMCID: PMC9657541 DOI: 10.3390/ijms232112799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2023] Open
Abstract
Metal bioaccumulation and metallothionein (MT) expression were investigated in the gills and liver of the red-blooded Antarctic teleost Trematomus hansoni to evaluate the possibility for this species to face, with adequate physiological responses, an increase of copper and cadmium concentrations in its tissues. Specimens of this Antarctic fish were collected from Terra Nova Bay (Ross Sea) and used for a metal exposure experiment in controlled laboratory conditions. The two treatments led to a significant accumulation of both metals and increased gene transcription only for the MT-1. The biosynthesis of MTs was verified especially in specimens exposed to Cd, but most of these proteins were soon oxidized, probably because they were involved in cell protection against oxidative stress risk by scavenging reactive oxygen species. The obtained data highlighted the phenotypic plasticity of T. hansoni, a species that evolved in an environment characterized by naturally high concentrations of Cu and Cd, and maybe the possibility for the Antarctic fish to face the challenges of a world that is becoming more toxic every day.
Collapse
Affiliation(s)
- Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, 1000 Tirana, Albania
| | - Sara Pacchini
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisabetta Piva
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Sophia Schumann
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padua, 35128 Padua, Italy
| | - Diana Ferro
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Paola Irato
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| | - Gianfranco Santovito
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy
| |
Collapse
|
11
|
Effects of Cadmium Exposure on Gut Villi in Danio rerio. Int J Mol Sci 2022; 23:ijms23041927. [PMID: 35216042 PMCID: PMC8878423 DOI: 10.3390/ijms23041927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/28/2023] Open
Abstract
In aquatic organisms, cadmium exposure occurs from ovum to death and the route of absorption is particularly wide, being represented by skin, gills and gastrointestinal tract, through which contaminated water and/or preys are ingested. It is known that cadmium interferes with the gut; however, less information is available on cadmium effects on an important component of the gut, namely goblet cells, specialized in mucus synthesis. In the present work, we studied the effects of two sublethal cadmium concentrations on the gut mucosa of Danio rerio. Particular attention was paid to changes in the distribution of glycan residues, and in metallothionein expression in intestinal cells. The results show that cadmium interferes with gut mucosa and goblet cells features. The effects are dose- and site-dependent, the anterior gut being more markedly affected than the midgut. Cadmium modifies the presence and/or distribution of glycans in the brush border and cytoplasm of enterocytes and in the goblet cells’ cytoplasm and alters the metallothionein expression and localization. The results suggest a significant interference of cadmium with mucosal efficiency, representing a health risk for the organism in direct contact with contamination and indirectly for the trophic chain.
Collapse
|
12
|
Sun M, Liu JQ, Du XL, Liu SQ, Wang L. Cloning and expression analysis of Shvasa and the molecular regulatory pathways implicated in Cd-induced reproductive toxicity in the freshwater crab Sinopotamon henanense. CHEMOSPHERE 2022; 288:132437. [PMID: 34627817 DOI: 10.1016/j.chemosphere.2021.132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a widespread, severely toxic heavy metal, can cause serious reproductive toxicity in animals. However, the molecular pathways associated with Cd-induced effects remain unknown. In this study, we first cloned the vasa gene (Shvasa) and characterized the VASA protein (ShVASA) in Sinopotamon henanense. We then investigated the molecular mechanisms of Cd-induced reproductive toxicity. Shvasa was specifically expressed in the ovary and testis. ShVASA was abundant in early ovarian development and significantly less abundant in mature ovaries. During oogenesis, ShVASA was abundant and evenly distributed in the cytoplasm of the oogonium and previtellogenic oocytes, but gradually accumulated in the nuclear periphery of vitellogenic and mature oocytes. As Cd concentration increased, ShVASA abundance decreased gradually in proliferation-stage ovaries, and increased gradually in mature ovaries. Notably, at the small and large growth stages, ShVASA was upregulated following exposure to 14.5 mg/L Cd and downregulated following exposure to 29 mg/L Cd. In contrast to the unexposed control, ShVASA accumulated around the nuclear periphery in Cd-exposed previtellogenic oocytes and scattered gradually into the cytoplasm in Cd-exposed vitellogenic and mature oocytes. Shvasa RNA interference (RNAi) downregulated Shnanos and Shpiwi, but simultaneous Cd exposure and Shvasa RNAi significantly upregulated Shnanos and downregulated Shpiwi. These data suggested that Cd disrupted Shvasa expression and function, as well as the functions of Shnanos and Shpiwi, leading to severe reproductive toxicity in S. henanense.
Collapse
Affiliation(s)
- Min Sun
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jun Qing Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiao Lin Du
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Si Qi Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|