1
|
Umar AW, Naeem M, Hussain H, Ahmad N, Xu M. Starvation from within: How heavy metals compete with essential nutrients, disrupt metabolism, and impair plant growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112412. [PMID: 39920911 DOI: 10.1016/j.plantsci.2025.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Nutrient starvation is a critical consequence of heavy metal toxicity, severely impacting plant health and productivity. This issue arises from various sources, including industrial activities, mining, agricultural practices, and natural processes, leading to the accumulation of metals such as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and nickel (Ni) in soil and water. Heavy metal exposure disrupts key physiological processes, particularly nutrient uptake and transport, resulting in nutrient imbalances within the plant. Essential nutrients are often unavailable or improperly absorbed due to metal chelation and interference with transporter functions, exacerbating nutrient deficiencies. This nutrient starvation, coupled with oxidative stress induced by heavy metals, manifests in impaired photosynthesis, stunted growth, and reduced crop yields. This review presents important insights into the molecular mechanisms driving nutrient deprivation in plants exposed to heavy metals, emphasizing the roles of transporters, transcription factors, and signaling pathways. It also examines the physiological and biochemical effects, such as chlorosis, necrosis, and altered metabolic activities. Lastly, we explore strategies to mitigate heavy metal-induced nutrient starvation, including phytoremediation, soil amendments, genetic approaches, and microbial interventions, offering insights for enhancing plant resilience in contaminated soils.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hamad Hussain
- Department of Agriculture, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23390, Pakistan
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China; Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China.
| |
Collapse
|
2
|
Tong F, Xu L, Zhang Y, Wu D, Hu F. Earthworm mucus contributes significantly to the accumulation of soil cadmium in tomato seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176169. [PMID: 39260500 DOI: 10.1016/j.scitotenv.2024.176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Whether earthworm mucus affects Cd transport behavior in soil-plant systems remains uncertain. Consequently, this study thoroughly assessed the impacts of earthworm mucus on plant growth and physiological responses, plant Cd accumulation, translocation, and distribution, as well as soil characteristics and Cd fractionation in a soil-plant (tomato seedling) system. Results demonstrated that the earthworm inoculation considerably enhanced plant Cd uptake and decreased plant Cd translocation, the effects of which were appreciably less significant than those of the earthworm mucus. This suggested that earthworm mucus may play a crucial role in the way earthworms influence plant Cd uptake and translocation. Moreover, the artificial mucus, which contained identical inorganic nitrogen contents to those in earthworm mucus, had no significant effect on plant Cd accumulation or translocation, implying that components other than inorganic nitrogen in the earthworm mucus may have contributed significantly to the overall effects of the mucus. Compared with the control, the earthworm mucus most substantially increased the root Cd content, the Cd accumulation amount of root and whole plant, and root Cd BCF by 93.7 %, 221.3 %, 72.2 %, and 93.7 %, respectively, while notably reducing the Cd TF by 48.2 %, which may be ascribed to the earthworm mucus's significant impacts on tomato seedling growth and physiological indicators, its considerable influences on the subcellular components and chemical species of root Cd, and its substantial effects on the soil characteristics and soil Cd fractionation, as revealed by correlation analysis. Redundancy analysis further suggested that the most prominent impacts of earthworm mucus may have been due to its considerable reduction of soil pH, improvement of soil DOC content, and enhancement of the exchangeable Cd fraction in soil. This work may help better understand how earthworm mucus influences the transport behavior of metals in soil-plant systems.
Collapse
Affiliation(s)
- Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Liu N, Zhao J, Du J, Hou C, Zhou X, Chen J, Zhang Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174237. [PMID: 38942300 DOI: 10.1016/j.scitotenv.2024.174237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.
Collapse
Affiliation(s)
- Nengqian Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiang Zhao
- Shanghai Rural Revitalization Research Center, PR China
| | - Jiawen Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
4
|
Kumar A, Dadhwal M, Mukherjee G, Srivastava A, Gupta S, Ahuja V. Phytoremediation: Sustainable Approach for Heavy Metal Pollution. SCIENTIFICA 2024; 2024:3909400. [PMID: 39430119 PMCID: PMC11490348 DOI: 10.1155/2024/3909400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Rapid industrialization, mining, and other anthropogenic activities have poisoned our environment with heavy metals, negatively impacting all forms of life. Heavy metal pollution causes physiological and neurological disorders, as heavy metals are endocrine disrupters, carcinogenic, and teratogenic. Therefore, it becomes mandatory to address the challenge of heavy metal contamination on a global scale. Physical and chemical approaches have been employed for pollutant removal and detoxification, but these methods cannot be adopted universally due to high cost, labor intensiveness, and possible negative impact on natural microflora. Phytoremediation is one of the preferred and safest approaches for environmental management due to its high efficiency and low cost of investment. The plant can uptake the pollutants and heavy metals from water and soil through an intense root network via rhizofiltration and process via phytostabilization, phytovolatilization, and accumulation. At a cellular level, the phytoremediation process relies on natural mechanisms of plant cells, e.g., absorption, transpiration, intracellular storage, and accumulation to counter the detrimental effects of pollutants. It is widely accepted because of its novelty, low cost, and high efficiency; however, the process is comparatively slower. In addition, plants can store pollutants for a long time but again become a challenge at the end of the life cycle. The current review summarizes phytoremediation as a potential cure for heavy metal pollutants, released from natural as well as anthropogenic sources. It will provide insight into the advancement and evolution of advanced techniques like nanoremediation that can improve the rate of phytoremediation, along with making it sustainable, cost-effective, and economically viable.
Collapse
Affiliation(s)
- Abhijit Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Mishika Dadhwal
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Apeksha Srivastava
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College (Affiliated to Punjabi University), Fatehgarh Sahib 140406, Punjab, India
| | - Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
- University Centre for Research & Development, Chandigarh University, Gharuan, Punjab, India
| |
Collapse
|
5
|
Yang Q, Yu H, Yang C, Zhao Z, Ju Z, Wang J, Bai Z. Enhanced phytoremediation of cadmium-contaminated soil using chelating agents and plant growth regulators: effect and mechanism. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240672. [PMID: 39323552 PMCID: PMC11421895 DOI: 10.1098/rsos.240672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The heavy metal cadmium (Cd) is a major threat to food safety and human health. Phytoremediation is the most widely used remediation technology, and how to improve the remediation efficiency of phytoremediation has become a key issue. In this study, we constructed an intensive phytoremediation technology for remediation of Cd-contaminated soil with biodegradable chelating agent and plant growth regulator combined with maize and investigated the mechanism of this technology. The results showed that the best remediation effect was achieved in the treatment with 10-6 mol l-1 gibberellic acid (GA3) and 6 mmol kg-1 aspartate diethoxysuccinic acid (AES) combined with maize. In this treatment, the total biomass and extraction efficiency of maize were 3.6 and 8.67 times higher than those of the control, respectively, and the antioxidant enzyme activities of maize were also increased. The soil was enriched with dominant bacterial genera that promote plant growth and metabolism and tolerance to heavy metal stress, which in turn promoted maize growth and Cd accumulation. Structural equation modelling results indicated a large effect of plant Cd concentration and plant antioxidant enzyme activity on plant Cd extraction. The enhanced phytoremediation technology showed good potential for safe use of Cd-contaminated soil.
Collapse
Affiliation(s)
- Qiao Yang
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Hao Yu
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Chen Yang
- College of Resource and Environment, Shanxi Agricultural University, Taigu030801, People’s Republic of China
| | - Zhongqiu Zhao
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhengshan Ju
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Jinman Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhongke Bai
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| |
Collapse
|
6
|
Xiao Q, Huang X, Chen Y, Zhang X, Liu X, Lu J, Mi L, Li B. Effects of N, N-bis (carboxymethyl)-L-glutamic acid and polyaspartic acid on the phytoremediation of cadmium in contaminated soil at the presence of pyrene: Biochemical properties and transcriptome analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121825. [PMID: 38996604 DOI: 10.1016/j.jenvman.2024.121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Chelator-assisted phytoremediation is an efficacious method for promoting the removal efficiency of heavy metals (HMs). The effects of N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) and polyaspartic acid (PASP) on Cd uptake and pyrene removal by Solanum nigrum L. (S. nigrum) were compared in this study. Using GLDA or PASP, the removal efficiency of pyrene was over 98%. And PASP observably raised the accumulation and transport of Cd by S. nigrum compared with GLDA. Meanwhile, both GLDA and PASP markedly increased soil dehydrogenase activities (DHA) and microbial activities. DHA and microbial activities in the PASP treatment group were 1.05 and 1.06 folds of those in the GLDA treatment group, respectively. Transcriptome analysis revealed that 1206 and 1684 differentially expressed genes (DEGs) were recognized in the GLDA treatment group and PASP treatment group, respectively. Most of the DEGs found in the PASP treatment group were involved in the metabolism of carbohydrates, the biosynthesis of brassinosteroid and flavonoid, and they were up-regulated. The DEGs related to Cd transport were screened, and ABCG3, ABCC4, ABCG9 and Nramp5 were found to be relevant with the reduction of Cd stress in S. nigrum by PASP. Furthermore, with PASP treated, transcription factors (TFs) related to HMs such as WRKY, bHLH, AP2/ERF, MYB were down-regulated, while more MYB and bZIP TFs were up-regulated. These TFs associated with plant stress resistance would work together to induce oxidative stress. The above results indicated that PASP was more conducive for phytoremediation of Cd-pyrene co-contaminated soil than GLDA.
Collapse
Affiliation(s)
- Qingyun Xiao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xun Huang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Shanghai Huali Integrated Circuit Manufacturing Co., LTD, Shanghai, 201317, China
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Jingxian Lu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Lanxin Mi
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Beibei Li
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai, 200125, China
| |
Collapse
|
7
|
Li X, Wu Q, Wang Y, Li G, Su Y. UHPM dominance in driving the formation of petroleum-contaminated soil aggregate, the bacterial communities succession, and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134322. [PMID: 38636238 DOI: 10.1016/j.jhazmat.2024.134322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
This study focused on the effects of urea humate-based porous materials (UHPM) on soil aggregates, plant physiological characteristics, and microbial diversity to explore the effects of UHPM on the phytoremediation of petroleum-contaminated soil. The compositions of soil aggregates, ryegrass (Lolium perenne) biomass, plant petroleum enrichment capacity, and bacterial communities in soils with and without UHPM were investigated. The results showed that UHPM significantly increased soil aggregate content by 0.25 mm-5 mm, resulting in higher fertilizer holding capacity, erosion resistance capacity, and plant biomass and microbial number than the soil without UHPM mixed. In addition, UHPM decreased the absorption of petroleum by plants in the soil while increasing the abundance of degrading bacteria and petroleum-degrading-related genes in the soil, thereby promoting the removal of hard-to-degrade petroleum components. RDA showed that, compared with the unimproved soil, each soil indicator was positively correlated with a high abundance of degrading bacteria in the improved soil and was significant. UHPM can be regarded as a petroleum-contaminated soil remediation agent that combines slow nutrient release with soil improvement effects.
Collapse
Affiliation(s)
- Xiaokang Li
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi 830046, China
| | - Quanfu Wu
- PetroChina Karamay Petrochemical Co., Ltd, Karamay 834000, China
| | - Yinfei Wang
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi 830046, China
| | - Gang Li
- Xinjiang Uygur Autonomous Region Solid Waste Management Center, Urumqi 830046, China.
| | - Yuhong Su
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
8
|
Deng S, Zhang X, Zhu Y, Zhuo R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 2024; 72:108337. [PMID: 38460740 DOI: 10.1016/j.biotechadv.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.
Collapse
Affiliation(s)
- Shaoxiong Deng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
9
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
10
|
Xu Z, Yang B, Yi K, Chen T, Xu X, Sun A, Li H, Li J, He F, Huan C, Luo Y, Wang J. Feasibility of feeding cadmium accumulator maize ( Zea mays L.) to beef cattle: Discovering a strategy for eliminating phytoremediation residues. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:1-9. [PMID: 37701042 PMCID: PMC10493888 DOI: 10.1016/j.aninu.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 09/14/2023]
Abstract
Eco-friendly and efficient strategies for eliminating cadmium (Cd) phytoremediation plant residues are needed. The present study investigated the feasibility of feeding Cd accumulator maize to beef cattle. In total, 20 cattle at 6 months of age were selected and randomly allocated into two groups fed with 85.82% (fresh basis) Cd accumulator maize (CAM) or normal maize (control [Con]) silage diets for 107 d. Feeding CAM did not affect the body weight (P = 0.24), while it decreased feed intake and increased feed efficiency of beef cattle (P < 0.01). Feeding CAM increased serum concentrations of immunoglobulin A and G, complement 3 and 4, blood urea nitrogen, and low-density lipoprotein cholesterol, decreased serum concentrations of interleukin-6 and lipopolysaccharide (P < 0.05), and caused wider lumens in the renal tubules. The Cd residue in meat was 7 μg/kg beyond the restriction for human food. In the muscle, the unsaturated fatty acids (t11C18:1 and C20:4), Lys, Arg, Pro, and Cys were decreased, while the saturated fatty acids (C10:0, C12:0, and C17:0) and Leu were increased (P < 0.05). Therefore, at the current feeding level, phytoremediation maize increased the feed efficiency of beef cattle, but did present risks to cattle health and production safety, and decreased the meat nutrition and flavor. Further research must be performed to determine whether a lower proper dose of phytoremediation maize and an appropriate feeding period may be possible to ensure no risk to cattle health and the supply of safe meat for humans.
Collapse
Affiliation(s)
- Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Tianrong Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinxin Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Yang Luo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Zulkernain NH, Uvarajan T, Ng CC. Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117926. [PMID: 37163837 DOI: 10.1016/j.jenvman.2023.117926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
Collapse
Affiliation(s)
- Nur Hanis Zulkernain
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia; School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Turkeswari Uvarajan
- School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Li Y, Rahman SU, Qiu Z, Shahzad SM, Nawaz MF, Huang J, Naveed S, Li L, Wang X, Cheng H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121433. [PMID: 36907241 DOI: 10.1016/j.envpol.2023.121433] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.
Collapse
Affiliation(s)
- Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhixin Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sadiq Naveed
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Ejaz U, Khan SM, Khalid N, Ahmad Z, Jehangir S, Fatima Rizvi Z, Lho LH, Han H, Raposo A. Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1154571. [PMID: 37251771 PMCID: PMC10215007 DOI: 10.3389/fpls.2023.1154571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Heavy metal concentrations exceeding permissible limits threaten human life, plant life, and all other life forms. Different natural and anthropogenic activities emit toxic heavy metals in the soil, air, and water. Plants consume toxic heavy metals from their roots and foliar part inside the plant. Heavy metals may interfere with various aspects of the plants, such as biochemistry, bio-molecules, and physiological processes, which usually translate into morphological and anatomical changes. They use various strategies to deal with the toxic effects of heavy metal contamination. Some of these strategies include restricting heavy metals to the cell wall, vascular sequestration, and synthesis of various biochemical compounds, such as phyto-chelators and organic acids, to bind the free moving heavy metal ions so that the toxic effects are minimized. This review focuses on several aspects of genetics, molecular, and cell signaling levels, which integrate to produce a coordinated response to heavy metal toxicity and interpret the exact strategies behind the tolerance of heavy metals stress. It is suggested that various aspects of some model plant species must be thoroughly studied to comprehend the approaches of heavy metal tolerance to put that knowledge into practical use.
Collapse
Affiliation(s)
- Ujala Ejaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Member Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Zeeshan Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadia Jehangir
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
14
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
15
|
Sharma JK, Kumar N, Singh NP, Santal AR. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1076876. [PMID: 36778693 PMCID: PMC9911669 DOI: 10.3389/fpls.2023.1076876] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 05/14/2023]
Abstract
The contamination of soils with heavy metals and its associated hazardous effects are a thrust area of today's research. Rapid industrialization, emissions from automobiles, agricultural inputs, improper disposal of waste, etc., are the major causes of soil contamination with heavy metals. These contaminants not only contaminate soil but also groundwater, reducing agricultural land and hence food quality. These contaminants enter the food chain and have a severe effect on human health. It is important to remove these contaminants from the soil. Various economic and ecological strategies are required to restore the soils contaminated with heavy metals. Phytoremediation is an emerging technology that is non-invasive, cost-effective, and aesthetically pleasing. Many metal-binding proteins (MBPs) of the plants are significantly involved in the phytoremediation of heavy metals; the MBPs include metallothioneins; phytochelatins; metalloenzymes; metal-activated enzymes; and many metal storage proteins, carrier proteins, and channel proteins. Plants are genetically modified to enhance their phytoremediation capacity. In Arabidopsis, the expression of the mercuric ion-binding protein in Bacillus megaterium improves the metal accumulation capacity. The phytoremediation efficiency of plants is also enhanced when assisted with microorganisms, biochar, and/or chemicals. Removing heavy metals from agricultural land without challenging food security is almost impossible. As a result, crop selections with the ability to sequester heavy metals and provide food security are in high demand. This paper summarizes the role of plant proteins and plant-microbe interaction in remediating soils contaminated with heavy metals. Biotechnological approaches or genetic engineering can also be used to tackle the problem of heavy metal contamination.
Collapse
Affiliation(s)
| | - Nitish Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - N. P. Singh
- Centre for Biotechnology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| | - Anita Rani Santal
- Department of Microbiology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| |
Collapse
|
16
|
Wang Y, Xu Y, Sun G, Liang X, Sun Y, Wang L, Huang Q. Comparative effects of Tagetes patula L. extraction, mercapto-palygorskite immobilisation, and the combination thereof on Cd accumulation by wheat in Cd-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112639. [PMID: 34403947 DOI: 10.1016/j.ecoenv.2021.112639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Phytoextraction and in situ immobilisation are two of the most commonly used remediation techniques for Cd-contaminated farmland. In theory, phytoextraction followed by immobilisation can reduce the total Cd and available Cd contents of the soil, making it suitable for the remediation of heavily Cd-contaminated alkaline soil. However, the real remediation efficiency is uncertain, and it is also unknown whether phytoextraction affects subsequent wheat Cd accumulation. In this study, two seasonal pot experiments were conducted to determine the effects of S,S-ethylenediamine disuccinic acid (EDDS)-assisted Tagetes patula L. (T. patula) extraction, mercapto-palygorskite (MPAL) immobilisation, and the combination thereof on subsequent Cd accumulation in wheat. EDDS application significantly increased the Cd content in the subsequent-soil solution, but the EDDS-activated Cd could not be absorbed by wheat roots. T. patula extraction decreased the subsequent soil pH value by 0.1-0.2 pH units, increased the available Cd content by 0.19 mg/kg, but had no effect on subsequent wheat Cd accumulation. The Cd absorption capacity of wheat roots and the Cd translocation capacity of wheat stems to grains of high-Cd wheat were higher than that of low-Cd wheat cultivar. The application of MPAL had no effect on soil pH value, but significantly decreased soil available Cd and exchangeable Cd contents by 17.78-36.76% and 21.13-52.63%; it also increased the Fe/Mn oxide-bound Cd fraction by 14.02-64.00%. MPAL application decreased the wheat grain Cd concentrations from 0.51 to 0.13 mg/kg (high-Cd wheat) and 0.35 to 0.05 mg/kg (low-Cd wheat), but had no negative effect on Fe, Mn, Cu, and Zn elements. Compared with the single MPAL application treatments, the combination treatments had no inhibition effect on Cd accumulation in wheat. MPAL is an efficient amendment, and considering the remediation efficiency, stability, and time of these methods, the combination of MPAL application with a low-Cd accumulation wheat cultivar represents a suitable proposal to ensure the safe production of wheat in Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Yale Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China.
| | - Guohong Sun
- School of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, People's Republic of China.
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Yuebing Sun
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Lin Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| |
Collapse
|