1
|
Mihajlović D, Srdić S, Benka P, Čereković N, Ilić P, Radanović D, Antić-Mladenović S. Potentially toxic elements in the agricultural soils of northwestern Bosnia and Herzegovina: spatial and vertical distribution, origin and ecological risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:295. [PMID: 39953330 DOI: 10.1007/s10661-025-13758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Identifying dominant sources and distribution of potentially toxic elements (PTEs) in soils is vital for environmental protection. However, detailed data on the ecological risks posed by PTEs are still limited in Bosnia and Herzegovina (BiH). This research aimed to fill that gap by examining the distribution and pollution levels of nickel (Ni), zinc (Zn), copper (Cu), and lead (Pb) in agricultural soils across three geomorphological units in the northwestern region of BiH. The study involved analyzing 338 soil samples collected from 169 sites at two soil depths: the arable layer (0-25 cm) and the sub-arable layer (25-50 cm). The average PTE contents across the entire study area followed the increasing order: Cu < Pb < Zn < Ni. Notably, the total Ni content exceeded the allowed maximum in 65.4% of the analyzed soils, with the highest exceedance in unit I (80.0%), followed by unit II (57.4%) and unit III (44.3%). Conversely, the total contents of Zn, Cu, and Pb were predominantly below the permissible maximum, with over 98% of the samples within safe limits. The study also found a homogeneous vertical distribution of all elements across different soil depths and an absence of significant ecological risk according to applied criteria: geo-accumulation index (Igeo), pollution index (PI), and pollution load index (PLI). These findings collectively suggest the dominance of natural (geochemical) sources of examined PTEs in the soils of this region. In addition to valuable insights into the soil environmental quality, this research underscores the importance of ongoing monitoring and risk assessment to protect soil health.
Collapse
Affiliation(s)
- Dijana Mihajlović
- Faculty of Agriculture, Institute of Agroecology and Soil Science, University of Banja Luka, Petra Bojovića 1a, 78000, Banja Luka, Bosnia and Herzegovina.
| | - Sretenka Srdić
- Colorado State University Spur, 4817 National Western Dr, Denver, CO, 80216, USA
| | - Pavel Benka
- Department of Water Management, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Nataša Čereković
- Centre for Development and Research Support, Institute of Genetic Resources, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Predrag Ilić
- PSRI Institute for Protection and Ecology of the Republic of Srpska, Vidovdanska 43, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Dragoja Radanović
- Institute for Medical Plant Research, Dr Josif Pančić", Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | | |
Collapse
|
2
|
Savage G, Jones JJ, Muñoz-Pérez JP, Lewis C, Galloway TS. Assessing the chemical landscape of the Galápagos Marine Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176659. [PMID: 39369998 DOI: 10.1016/j.scitotenv.2024.176659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The Galápagos Archipelago is at the forefront of the Anthropocene, facing intensifying pressures from its growing human footprint and accelerated global connectivity. Despite this, little is currently known of its chemical landscape. This review critically examines the drivers, sources, distribution and fate of oil, plastics, pesticides, persistent organic pollutants and heavy metals in the Galápagos Marine Reserve, identifying pollutant hotspots and evaluating rapid assessment methods and sentinel species that could aid regional monitoring. The cumulative influence of the Galápagos' equatorial position amongst major (and seasonally variable) atmospheric and oceanic circulation patterns, along with its distinctive geophysical and environmental conditions, such as extreme UV radiation and precipitation, likely exacerbates the archipelagos susceptibility to chemicals from both local and continental inputs. Point and diffuse sources identified include wastewater/effluent discharge, agricultural run-off, mismanaged waste, recreational boating, commercial shipping and industrial fishing. Limited spatiotemporal monitoring has hindered the identification of pollution hotspots, except for harbours as aggregates for maritime activities and urban run-off, and eastern-facing coastlines exposed to the Humboldt Current as plastic accumulation zones. Furthermore, the remote nature and vital protected status of the Galápagos National Park has constrained comprehensive assessment of chemical toxicity and its impacts on marine species across the reserve, with studies primarily restricted to Galápagos pinnipeds. Thus, there is currently insufficient knowledge to determine the extent to which the widespread but sporadic presence of chemical contaminants threatens the resilience and adaptive capacity of Galápagos' complex ecosystems, unique biodiversity and interconnected environmental processes. Future efforts are recommended to strengthen environmental monitoring and chemical risk assessment through the utilisation of rapid assessment tools and regional sentinel species, enhancing fundamental understanding of the chemical landscape in this global conservation Hope Spot, as well as the wider implications of the Anthropocene on diverse, dynamic and remote island ecosystems.
Collapse
Affiliation(s)
- Georgie Savage
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Jen J Jones
- Galápagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, United Kingdom
| | - Juan Pablo Muñoz-Pérez
- Galápagos Science Center, Alsacio Northia Avenue, Puerto Baquerizo Moreno, Galápagos, Ecuador; Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Puerto Baquerizo Moreno, Galápagos, Ecuador; School of Science, Technology & Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Ceri Lewis
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Tamara S Galloway
- Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
3
|
Deliboran A, Varol M, Aytop H. Evaluation of ecological and health risks of trace elements in soils of olive orchards and apportionment of their sources using the APCS-MLR receptor model. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:320. [PMID: 39012557 PMCID: PMC11252231 DOI: 10.1007/s10653-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
İzmir, Turkey's third most populous city, is in an important position in terms of both agriculture and industry. The province, which contributes 9.3% to the country's industrial production, also has an important potential in terms of olive cultivation. However, until now, no research has been undertaken to analyze the content of trace elements (TEs) in the soil of olive orchards in İzmir. This study was carried out to determine the pollution level and ecological risks of TEs in the olive orchards soils of İzmir province, to reveal their potential sources and to evaluate their health risks. Among the TEs, the average content of only Ni (37.9 mg/kg) exceeded the world soil average content (29 mg/kg), while the average content of only Cd (0.176 mg/kg) exceeded the upper continental crust content (0.09 mg/kg). Enrichment factor revealed that there was significant enrichment for Cd in 73.6%, Ni in 11.6% and Cr in 5.4% of olive orchards, respectively, due to polluted irrigation water and agrochemicals. Similarly, ecological risk factor indicated that there were moderate and considerable ecological risks for Cd in 48.8% and 23.3% of olive orchards, respectively. Absolute principal component scores-multiple linear regression (APCS-MLR) model showed that Ni and Cr in the study area are affected by agricultural sources, Al, Co, Cu, Fe, Mn, Pb and Zn originate from lithogenic sources, and Cd originates from mixed sources. Based on health risk evaluation methods, non-carcinogenic and carcinogenic effects would not be expected for residents. This study provides significant knowledge for evaluating soil TE pollution in olive orchards and serves a model for source apportionment and human health risk evaluation of TEs in other agricultural regions.
Collapse
Affiliation(s)
| | - Memet Varol
- Faculty of Agriculture, Malatya Turgut Özal University, Malatya, Turkey.
| | - Halil Aytop
- Kahramanmaraş East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| |
Collapse
|
4
|
Kong X, Liu Y, Duan Z, Lv J. Bayesian multivariate receptor model and convolutional neural network to identify quantitative sources and spatial distributions of potentially toxic elements in soils: A case study in Qingzhou City, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135184. [PMID: 39024766 DOI: 10.1016/j.jhazmat.2024.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Determining sources and spatial distributions of potentially toxic elements (PTEs) is a crucial issue of soil pollution survey. However, uncertainty estimation for source contributions remains lack, and accurate spatial prediction is still challenging. Robust Bayesian multivariate receptor model (RBMRM) was applied to the soil dataset of Qingzhou City (8 PTEs in 429 samples), to calculate source contributions with uncertainties. Multi-task convolutional neural network (MTCNN) was proposed to predict spatial distributions of soil PTEs. RBMRM afforded three sources, consistent with US-EPA positive matrix factorization. Natural source dominated As, Cr, Cu, and Ni contents (78.5 %∼86.1 %), and contributed 37.1 %, 61.0 %, and 65.9 % of Cd, Pb, and Zn, exhibiting low uncertainties with uncertainty index (UI) < 26.7 %. Industrial, traffic, and agricultural sources had significant influences on Cd, Pb, and Zn (30.2 %∼61.9 %), with UI < 39.3 %. Hg originated dominantly from atmosphere deposition (99.1 %), with relatively high uncertainties (UI=87.7 %). MTCNN acquired satisfactory accuracies, with R2 of 0.357-0.896 and nRMSE of 0.092-0.366. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb, and Zn were influenced by parent materials. Cd, Hg, Pb, and Zn showed significant hotspot in urban area. This work conducted a new approach exploration, and practical implications for soil pollution regulation were proposed.
Collapse
Affiliation(s)
- Xiangyi Kong
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
| | - Yang Liu
- Business School, University of Ji'nan, Ji'nan 250022, China
| | - Zongqi Duan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianshu Lv
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China.
| |
Collapse
|
5
|
Saleem M, Pierce D, Wang Y, Sens DA, Somji S, Garrett SH. Heavy Metal(oid)s Contamination and Potential Ecological Risk Assessment in Agricultural Soils. J Xenobiot 2024; 14:634-650. [PMID: 38804290 PMCID: PMC11130943 DOI: 10.3390/jox14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Soil pollution caused by heavy metal(oid)s has generated great concern worldwide due to their toxicity, persistence, and bio-accumulation properties. To assess the baseline data, the heavy metal(oid)s, including manganese (Mn), iron (Fe), Cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), mercury (Hg), chromium (Cr), and cadmium (Cd), were evaluated in surface soil samples collected from the farmlands of Grand Forks County, North Dakota. Samples were digested via acid mixture and analyzed via inductively coupled plasma mass spectrometry (ICP MS) analysis to assess the levels, ecological risks, and possible sources. The heavy metal(oid) median levels exhibited the following decreasing trend: Fe > Mn > Zn > Ni > Cr > Cu > Pb > Co > As > Cd > Hg. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested the main lithogenic source for the studied metal(oid)s. Metal(oid) levels in the current investigation, except Mn, are lower than most of the guideline values set by international agencies. The contamination factor (Cf), geo accumulation index (Igeo) and enrichment factor (EF) showed considerable contamination, moderate contamination, and significant enrichment, respectively, for As and Cd on median value basis. Ecological risk factor (Er) results exhibited low ecological risk for all studied metal(oid)s except Cd, which showed considerable ecological risk. The potential ecological risk index (PERI) levels indicated low ecological risk to considerable risk. Overall, the results indicate the accumulation of As and Cd in the study area. The high nutrients of the soils potentially affect their accumulation in crops and impact on consumers' health. This drives the impetus for continued environmental monitoring programs.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - David Pierce
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuqiang Wang
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Donald A Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Scott H Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
6
|
Vélez-Terreros PY, Romero-Estévez D, Navarrete H, Yánez-Jácome GS. Nutritional Quality of Conventional, Organic, and Hydroponic Tomatoes Commercialized in Quito, Ecuador. Foods 2024; 13:1348. [PMID: 38731718 PMCID: PMC11082976 DOI: 10.3390/foods13091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
The consumption of natural foods is increasingly high, and in recent years, consumers have preferred foods from systems with responsible management of natural resources (organic, hydroponic). However, there are still contradictions regarding the nutritional content of products from these different types of crops. Our study aims to compare, for the first time, the content of antioxidants (ascorbic acid, lycopene, total phenolics, essential fatty acids), micronutrients (copper, iron, manganese, zinc), contaminants (cadmium and lead), and free radical scavenging activity between conventional, organic, and hydroponic tomatoes (Solanum lycopersicum) sold in markets in Quito, Ecuador. Ascorbic acid and lycopene were determined by HPLC/UV-Vis. Total phenolics (Folin-Ciocalteu method) and free-radical scavenging activity (2,2-diphenyl-1-picrylhydrazyl method) were determined via UV-Vis spectrophotometry. Lipid profiles were determined as fatty acid methyl esters through a GC-FID. Trace metals were determined using FAAS (micronutrients), and GFAAS (pollutants). No significant differences (p > 0.05) between antioxidant and micronutrient content among the three types of tomatoes were found. Regarding cadmium and lead, the contents were below the Codex Alimentarius threshold limits. Finally, free radical scavenging activity varied slightly (organic > hydroponic > conventional). Although the samples showed certain differences in antioxidant content, none of the tomato types could be considered nutritionally better because of the high variability of the results.
Collapse
Affiliation(s)
- Pamela Y. Vélez-Terreros
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito 170525, Ecuador; (P.Y.V.-T.); (D.R.-E.)
| | - David Romero-Estévez
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito 170525, Ecuador; (P.Y.V.-T.); (D.R.-E.)
| | - Hugo Navarrete
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito. Av. 12 de Octubre 1076 y Roca, Quito 170525, Ecuador;
| | - Gabriela S. Yánez-Jácome
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito 170525, Ecuador; (P.Y.V.-T.); (D.R.-E.)
| |
Collapse
|
7
|
Romero-Crespo P, Jiménez-Oyola S, Salgado-Almeida B, Zambrano-Anchundia J, Goyburo-Chávez C, González-Valoys A, Higueras P. Trace elements in farmland soils and crops, and probabilistic health risk assessment in areas influenced by mining activity in Ecuador. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4549-4563. [PMID: 36856885 PMCID: PMC10310628 DOI: 10.1007/s10653-023-01514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Consumption of food grown in contaminated soils may be a significant human exposure pathway to pollutants, including toxic elements. This study aimed to investigate the pollution level of trace elements in farmland soil and crops collected in orchards from Ponce Enriquez, one of the Ecuador's most important gold mining areas. The concentration of arsenic (As), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) was analyzed in soil and crop samples (celery, chives, corn, herbs, lettuce, turnips, green beans, cassava, and carrots). In addition, a probabilistic human health risk assessment, in terms of hazard quotients (HQ) and cancer risk (CR), was conducted to assess the potential risk related to local crop ingestion. The contents of As, Cr, Cu, and Ni in soils exceeded the Ecuadorian quality guidelines for agricultural soils. The trace elements concentration in local crops was higher than the maximum permissible levels set by the Food and Agriculture Organization of the United Nations (FAO). The HQ and CR of local crop ingestion were several orders higher than the safe exposure threshold, mainly for lettuce, chives, and turnips. Our results revealed that inhabitants of the study area are exposed to developing carcinogenic and non-carcinogenic effects due to long-term food consumption with high trace elements. This study sheds light on the need to assess further the quality of agricultural soils and crops grown in mining areas with signs of contamination to guarantee consumer food safety.
Collapse
Affiliation(s)
- Paola Romero-Crespo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Samantha Jiménez-Oyola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Bryan Salgado-Almeida
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Johanna Zambrano-Anchundia
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Cindy Goyburo-Chávez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ana González-Valoys
- Centro Experimental de Ingeniería, Universidad Tecnológica de Panamá, Vía Tocumen, P.O. Box 0819-07289, Panama City, Panama
- SNI-SENACYT Sistema Nacional de Investigación-Secretaria Nacional de Ciencia, Tecnología e Innovación, Clayton, Ciudad del Saber Edif.205, P.O. Box 0816-02852, Panama City, Panama
| | - Pablo Higueras
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, EIMI Almadén. Almadén, 13400, Ciudad Real, Spain
| |
Collapse
|
8
|
Aloo BN, Dessureault-Rompré J, Tripathi V, Nyongesa BO, Were BA. Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants. Front Microbiol 2023; 14:1171104. [PMID: 37455718 PMCID: PMC10347528 DOI: 10.3389/fmicb.2023.1171104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Agricultural areas exhibiting numerous abiotic stressors, such as elevated water stress, temperatures, and salinity, have grown as a result of climate change. As such, abiotic stresses are some of the most pressing issues in contemporary agricultural production. Understanding plant responses to abiotic stressors is important for global food security, climate change adaptation, and improving crop resilience for sustainable agriculture, Over the decades, explorations have been made concerning plant tolerance to these environmental stresses. Plant growth-promoting rhizobacteria (PGPR) and their phytohormones are some of the players involved in developing resistance to abiotic stress in plants. Several studies have investigated the part of phytohormones in the ability of plants to withstand and adapt to non-living environmental factors, but very few have focused on rhizobacterial hormonal signaling and crosstalk that mediate abiotic stress tolerance in plants. The main objective of this review is to evaluate the functions of PGPR phytohormones in plant abiotic stress tolerance and outline the current research on rhizobacterial hormonal communication and crosstalk that govern plant abiotic stress responses. The review also includes the gene networks and regulation under diverse abiotic stressors. The review is important for understanding plant responses to abiotic stresses using PGPR phytohormones and hormonal signaling. It is envisaged that PGPR offer a useful approach to increasing plant tolerance to various abiotic stresses. However, further studies can reveal the unclear patterns of hormonal interactions between plants and rhizobacteria that mediate abiotic stress tolerance.
Collapse
Affiliation(s)
- B. N. Aloo
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | | | - V. Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - B. O. Nyongesa
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - B. A. Were
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
9
|
Yalçın MG, Mutlu E, Olguner C, Atakoğlu ÖÖ, Bat L, Özkan EY. Spatial geochemical structure of soft sediment on shallow littoral of the Gulf of Antalya, the eastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 193:115155. [PMID: 37321003 DOI: 10.1016/j.marpolbul.2023.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
The concentrations of heavy metals in soft sediments of the Manavgat and Lara regions in Antalya, Türkiye were investigated to assess contamination levels and their potential sources, followed by multivariate statistical analysis and generation of spatial distribution maps. Results showed low contamination levels for As, Zn, and Cu, moderate contamination for Pb, Ni, and Mn, and very high accumulation for Co and Cr. Geoaccumulation index (Igeo) and contamination factor (CF) analyses revealed moderate enrichment for Mn and low enrichment for As, indicating no human-induced contamination in Cu, Pb, Zn, Mn, and As, while Ni, Co, and Cr originated mainly from agriculture. The maximum modified degree of contamination (mCd) value was at an extreme high level, with an average mCd of 4.12 indicating high contamination. Maximum pollution load index (PLI) value was 3.13, indicating high-grade pollution and an average value of 1.7 indicating moderate pollution.
Collapse
Affiliation(s)
| | - Erhan Mutlu
- Department of Hydrobiology, Fisheries Faculty, University of Akdeniz, Antalya, Türkiye
| | | | - Özge Özer Atakoğlu
- Department of Geology, Engineering Faculty, University of Akdeniz, Antalya, Türkiye
| | - Levent Bat
- Department of Hydrobiology, Fisheries Faculty, University of Sinop, 57000 Sinop, Türkiye.
| | - Ebru Yeşim Özkan
- Department of Hydrobiology, Fisheries Faculty, University of Izmir Katip Çelebi, Türkiye
| |
Collapse
|
10
|
Yan X, Yang B, He E, Peijnenburg WJGM, Zhao L, Xu X, Cao X, Romero-Freire A, Qiu H. Fate and transport of chromium in industrial sites: Dynamic simulation on soil profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159799. [PMID: 36309257 DOI: 10.1016/j.scitotenv.2022.159799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Direct discharge of chromium-containing waste water and improper disposal of waste residues in industrial sites may lead to the vertical migration of metals into aquifers, posing serious threat to soil-groundwater system. The heterogeneity in soil profile further aggravates the complexity and unpredictability of this transport process. However, topsoil was the main focus of most studies. Herein, the vertical transport and transformation of Cr in soils at different depths in three industrial sites (i.e., Shijiazhuang, Zhuzhou, and Guangzhou) were investigated to delineate Cr transport and retention characteristics under complex conditions. Regional and vertical differences in soil properties led to the specificity in Cr migration behaviors among these three sites. Correlation analysis showed that soil pH (r = -0.909, p < 0.05) and Fe content (r = 0.949, p < 0.01) were the major controlling factors of Cr(VI) migration and transformation in aquifers. Furthermore, the soil of Zhuzhou site showed the maximum adsorption capacity for Cr(VI) (0.225 mol/kg), and the strongest reduction ability of Cr(VI) was observed in the Guangzhou soil. Results of model-based long-term forecast indicated that the Cr(III) concentration in the liquid phase of Guangzhou subsoil could reach 0.08 mol/m3 within 20 years. Heavier rainfall condition exacerbated the contamination due to an increased pollutant flux and enhanced convection. Specially, Cr was fixed in the topsoil of Zhuzhou site with the formation of PbCrO4 and presented least vertical migration risk. The conclusions above can provide scientific theoretical guidance for heavy metal pollution prevention and control in industrial contaminated regions.
Collapse
Affiliation(s)
- Xuchen Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720BA, the Netherlands
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ana Romero-Freire
- Department of Soil Science, University of Granada, Granada 18002, Spain
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Romero-Estévez D, Yánez-Jácome GS, Navarrete H. Non-essential metal contamination in Ecuadorian agricultural production: A critical review. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Yang J, Sun Y, Wang Z, Gong J, Gao J, Tang S, Ma S, Duan Z. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. CHEMOSPHERE 2022; 304:135340. [PMID: 35709847 DOI: 10.1016/j.chemosphere.2022.135340] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are naturally occurring elements with high natural background levels in the volcanic area. Therefore, it is necessary to conduct a risk assessment and identify potential sources of heavy metals. In this study, 4488 soil samples (0-20 cm) were collected in Chengmai County, a typical volcanic area in Hainan Province, and analyzed for eight heavy metals and major oxides. Pollution level, ecological risks, and health risks were evaluated by geo-accumulation index (Igeo), pollution index (PI), potential ecological risk index (RI), hazard index (HI), and carcinogenic risks (CR). The positive matrix factorization (PMF) model was further used to determine the priority source of heavy metals. The average values of heavy metal concentrations in soil were 7.06, 0.07, 156.88, 33.43, 0.05, 72.47, 19.48, and 67.51 mg kg-1 for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively. Except for Pb, the average concentrations of all heavy metals exceeded background concentration in Hainan soils, indicating different degrees of heavy metal enrichment. The Igeo and PI showed that the main pollutant element in volcanic soils was Ni, followed by Cr and Cu. The RI shows that the percentage of soil samples with considerable or worse potential ecological risk was 44.4% of the total samples, with Hg, As, Cd, and Ni causing high ecological risks. The estimated average daily doses of heavy metals were below the tolerable limits and the HI values were below one for both adults and children, indicating that the residents had an acceptable potential non-carcinogenic risk. However, the potential carcinogenic risk of exposure to Cr, Ni, and As was unacceptable for residents, with high CR values exceeding 10-4, especially for children. Based on the PMF, five major sources of heavy metals were found in the study area: Ni, Cu, and Zn mainly from parent materials, As and Pb from daily life and vehicle emissions, Cd from agricultural activities, Hg from industrial activities, and Cr from parent materials under different environmental conditions. Significant positive correlations between Al2O3, TFe2O3, Mn, soil organic carbon (SOC), and heavy metals reflect that aluminium-rich minerals, Fe-Mn oxides, and SOC are the most critical factors affecting heavy metal accumulation in volcanic agricultural soils.
Collapse
Affiliation(s)
- Jianzhou Yang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China.
| | - Yanling Sun
- School of Earth Sciences, China University of Geoscience, Wuhan, 430074, China
| | - Zhenliang Wang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Jingjing Gong
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Jianweng Gao
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Shixin Tang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Shengming Ma
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Zhuang Duan
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| |
Collapse
|
13
|
Exploring Soil Pollution Patterns Using Self-Organizing Maps. TOXICS 2022; 10:toxics10080416. [PMID: 35893849 PMCID: PMC9330445 DOI: 10.3390/toxics10080416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022]
Abstract
The geochemical composition of bedrock is the key feature determining elemental concentrations in soil, followed by anthropogenic factors that have less impact. Concerning the latter, harmful effects on the trophic chain are increasingly affecting people living in and around urban areas. In the study area of the present survey, the municipalities of Cosenza and Rende (Calabria, southern Italy), topsoil were collected and analysed for 25 elements by inductively coupled plasma mass spectrometry (ICP-MS) in order to discriminate the different possible sources of elemental concentrations and define soil quality status. Statistical and geostatistical methods were applied to monitoring the concentrations of major oxides and minor elements, while the Self-Organizing Maps (SOM) algorithm was used for unsupervised grouping. Results show that seven clusters were identified-(I) Cr, Co, Fe, V, Ti, Al; (II) Ni, Na; (III) Y, Zr, Rb; (IV) Si, Mg, Ba; (V) Nb, Ce, La; (VI) Sr, P, Ca; (VII) As, Zn, Pb-according to soil elemental associations, which are controlled by chemical and mineralogical factors of the study area parent material and by soil-forming processes, but with some exceptions linked to anthropogenic input.
Collapse
|
14
|
Githaiga KB, Njuguna SM, Gituru RW, Yan X. Assessing heavy metal contamination in soils using improved weighted index (IWI) and their associated human health risks in urban, wetland, and agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66012-66025. [PMID: 34327642 DOI: 10.1007/s11356-021-15404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Contamination of nine heavy metals (HMs) Zn, Pb, Cu, Cd, As, Co, Cr, Mo, and Ni in agricultural, urban, and wetland soils from Western and Rift Valley parts of Kenya was assessed using improved weighted index (IWI) and pollution loading index (PLI). Non-carcinogenic risks posed by the HMs were assessed using hazard quotients (HQ) and hazard index (HI), while carcinogenic risks were assessed using cancer risks (CR) and total cancer risks (TCR). The average concentration of Zn, Cr, Ni, Pb, Co, Cu, As, Mo, and Cd was 94.7 mg/kg, 43.6 mg/kg, 22.3 mg/kg, 21.0 mg/kg, 19.8 mg/kg, 18.0 mg/kg, 16.3 mg/kg, 1.83 mg/kg, and 1.16 mg/kg, respectively. IWI ranged from 0.57 to 6.04 and categorized 6.82% of the study sites as not polluted, 27.3% as slightly polluted, 43.2% as moderately polluted, and 22.7% as seriously polluted. PLI ranged from 0.38 to 3.95 and classified 15.9% of the sites as not polluted, 61.4% as slightly polluted, 20.5% as moderately polluted, and only 2.3% as seriously polluted. Wetlands retained more HMs from both urban and agricultural runoff and were therefore the most polluted. The heavy metals did not pose any risks via inhalation and dermal contact, but HQingestion for As for children was >1 in 2.3% of the sites studied. CR via ingestion and TCR for As were above the allowable limits for children and adults indicating high risks of cancer. Intensive agriculture and urbanization should be closely monitored to prevent further HM pollution.
Collapse
Affiliation(s)
- Kelvin Babu Githaiga
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Samwel Maina Njuguna
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert Wahiti Gituru
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, P. O Box 62000, Nairobi, 00200, Kenya
| | - Xue Yan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
15
|
Rechberger MV, Roberti D, Phillips A, Zehetner F, Keiblinger KM, Kandeler E, Gerzabek MH. Cadmium retention and microbial response in volcanic soils along gradients of soil age and climate on the Galápagos Islands. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1233-1245. [PMID: 34350988 DOI: 10.1002/jeq2.20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The behavior of trace metals may vary strongly in the course of volcanic soil development. Cadmium retention in soils is specifically important for some Galápagos islands where agriculture is leading to anthropogenic Cd contamination. To assess the influence of soil development factors on soil Cd retention and toxicity, we performed Cd sorption-desorption experiments with volcanic topsoils from the Galápagos Islands sampled along gradients of (a) substrate age (chronosequence, 1.5-1,070 ka) and (b) climate (elevation sequence, 47-866 m asl) ranging from arid lowland areas to humid highland areas. Additionally, the effects of Cd toxicity on the soil microbial community composition were evaluated for two soils of the chronosequence. In young volcanic soils, the sorption capacity was very high but decreased rapidly with soil age and increasing elevation. These trends were coupled with decreases in soil weathering indicators (e.g., electrical conductivity, pH, and effective cation exchange capacity) as well as changes in soil mineralogy. Cadmium addition did not influence total phospholipid fatty acids and basal respiration in most soils. However, with increasing Cd concentration, a pronounced reduction in the Gram-negative/Gram-positive bacteria ratio (from 0.32 to 0.12) occurred in an old, highly weathered soil with low Cd retention capacity. Our results show that up to 60% of added Cd was only weakly sorbed in old volcanic soils. As a consequence, the old volcanic soils of Galápagos bear the potential risk that the mobile Cd fraction is taken up by soil microorganisms, transferring this element into the food chain.
Collapse
Affiliation(s)
- Maria V Rechberger
- Institute of Soil Research, Univ. of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, Vienna, 1190, Austria
| | - Daniela Roberti
- Institute of Soil Research, Univ. of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, Vienna, 1190, Austria
| | - Avion Phillips
- Institute of Soil Research, Univ. of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, Vienna, 1190, Austria
- Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Emil-Wolff-Str. 27, Stuttgart, 70599, Germany
| | - Franz Zehetner
- Institute of Soil Research, Univ. of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, Vienna, 1190, Austria
- Galápagos National Park Directorate, Av. Charles Darwin s/n, Puerto Ayora, Santa Cruz, Galápagos, Ecuador
| | - Katharina M Keiblinger
- Institute of Soil Research, Univ. of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, Vienna, 1190, Austria
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Emil-Wolff-Str. 27, Stuttgart, 70599, Germany
| | - Martin H Gerzabek
- Institute of Soil Research, Univ. of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, Vienna, 1190, Austria
| |
Collapse
|