1
|
Gao J, Xing X, Cai W, Li Z, Shi G, Chen Y, Liang H, Chen C, Ma K, Chen J, Hu C. Effect of micropollutants on disinfection byproducts and antibiotic resistance genes in drinking water in the process of biological activated carbon treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132304. [PMID: 37748307 DOI: 10.1016/j.jhazmat.2023.132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/27/2023]
Abstract
The biofilm stress response of biological activated carbon (BAC) was investigated under prolonged exposure to sulfadiazine and 2,4-Dichlorophenoxyacetic acid, simulating complex emerging organic contaminants (EOCs) that are mainly involved in the formation of nitrogenous disinfection byproducts (N-DBPs) and antibiotic resistance genes (ARGs). Under trace complex EOCs condition (2 µg/L), N-DBP precursors and abundance of ARGs increased significantly in BAC effluent. The total formation potential of haloacetonitriles (HANs) and halonitromethanes (HNMs) was 751.47 ± 2.98 ng/L, which was much higher than the control group (440.67 ± 13.38 ng/L without EOCs). Similarly, the relative abundance of ARGs was more than twice that in the control group. The complex EOCs induce excessive extracellular polymeric substance secretion (EPS), thereby causing more N-DBP precursors and stronger horizontal gene transfer. Metagenome analysis revealed that functional amino acid and protein biosynthesis genes were overexpressed compared to the control group, causing more EPS to be secreted into the external environment. Complex EOCs promote Cobetia, Clostridium, and Streptomyces dominance, contributing to the production of N-DBP precursors and ARGs. For the first time, in addition to the direct hazards of the EOCs, this study successfully revealed the indirect water quality risks of complex EOCs from the microbial stress response during BAC treatment. Synergistic regulation of EOCs and microorganisms is important for tap water security.
Collapse
Affiliation(s)
- Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guogui Shi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hao Liang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Kunyu Ma
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Jinrong Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou 510000, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Ye B, Song ZM, Wu DX, Liang JK, Wang WL, Hu W, Yu Y. Comparative molecular transformations of dissolved organic matter induced by chlorination and ammonia/chlorine oxidation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122771. [PMID: 37858698 DOI: 10.1016/j.envpol.2023.122771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The ammonia/chlorine oxidation process can greatly degrade PPCPs in water. However, its effect on molecular transformations of natural organic matter (NOM) and effluent organic matter (EfOM) are still poorly understood. In this study, molecular transformations of NOM and EfOM occurring during ammonia/chlorine were explored and compared with those occurred during chlorination, using spectroscopy and mass spectrometry. Phenolic and highly unsaturated aliphatic compounds together with aliphatic compounds were found to be predominant in both NOM and EfOM samples, all of which were significantly degraded after two processes. The ammonia/chlorine process led to greater decreases in the molecular weights of such components but lower reductions in aromaticity. Compared with chlorination, ammonia/chlorine was found to be more likely to degrade compounds while remaining fluorophores or chromophores. The CH(N)O(S) precursors were found to be similar for both processes but their products were quite different. The CH(N)O(S) precursors that only found in ammonia/chlorine had higher molecular weights and greater degrees of oxidation but lower degrees of saturation. In contrast, the unique CH(N)O(S) products that only found in ammonia/chlorine exhibited lower molecular weights and lower degrees of oxidation degrees together with higher degrees of saturation. Lower total abundance of chlorinated byproducts was found by ammonia/chlorine compared with chlorination, although the former process provided a richer diversity. In all water samples, chlorinated byproducts were mainly generated by substitution reactions during ammonia/chlorine and chlorination. Overall, the findings of this study could provide new insights into the transformations of NOM and EfOM induced by ammonia/chlorine and chlorination.
Collapse
Affiliation(s)
- Bei Ye
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 6158540, Japan
| | - Zhi-Min Song
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Pingshan District Urban Management and Law Enforcement Bureau, Shenzhen, 518118, PR China
| | - De-Xiu Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Jun-Kun Liang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Earth System Science, Tsinghua University, Beijing, 100084, PR China
| | - Wen-Long Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Wei Hu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yang Yu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
3
|
Nguyen HVM, Tak S, Hur J, Shin HS. Fluorescence spectroscopy in the detection and management of disinfection by-product precursors in drinking water treatment processes: A review. CHEMOSPHERE 2023; 343:140269. [PMID: 37748659 DOI: 10.1016/j.chemosphere.2023.140269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/27/2023]
Abstract
Monitoring and prevention of the formation of disinfection by-products (DBPs) is paramount in drinking water treatment plants (DWTP) to ensure human health safety. This review provides an overview of how fluorescence techniques are developed to predict DBP formation and to evaluate the reduction of fluorescence components and DBPs following individual DWTP processes. Evidence has shown that common DBPs, nitrogenous DBPs and specific emerging DBPs exhibit positive linear relationships with terrestrial, anthropogenic, tryptophan-like, and eutrophic humic-like fluorescence. Due to the interrelationships of both regulated and emerging DBP types with fluorescence components, the limitations arise when attempting to predict emerging DBPs solely through linear relationships. Monitoring the reduction of DBP precursors after each treatment process can be achieved by studying the relationship between fluorescence components and DBPs. During the coagulation process, highest reduction rates are observed for terrestrial humic-like fluorescence. Advanced treatments such as granular, powdered, silver-impregnated activated carbon, magnetic ion exchange resins, and reverse osmosis, have revealed a significant reduction of fluorescent DBP precursors, ranging from 53% to 100%. During chlorination, the reduction rate follows the order: terrestrial humic-like > microbial humic-like > protein/tryptophan-like fluorescence. This review provides insights into the reduction of fluorescence signatures following individual DWTP processes, which offers information regarding DBP formation. These insights could assist in optimizing the treatment process to more effectively manage DBP formation. For the identification of emerging DBP generation, the utilization of advanced models is imperative to precisely predict emerging DBPs and to more accurately trace DBP precursors within DWTPs.
Collapse
Affiliation(s)
- Hang Vo-Minh Nguyen
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Seoul, 01811, South Korea
| | - Surbhi Tak
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| | - Hyun-Sang Shin
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Seoul, 01811, South Korea.
| |
Collapse
|
4
|
Kozari A, Voutsa D. Impact of climate change on formation of nitrogenous disinfection by products. Part I: Sea level rise and flooding events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166041. [PMID: 37543335 DOI: 10.1016/j.scitotenv.2023.166041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Climate change causes heavy rainfall incidents and sea level rise, which have serious impact on the availability and quality of water resources. These extreme phenomena lead to the rise of external and internal precursors in water reservoirs, and consequently affect the formation of disinfection by-products (DBPs). The aim of this study was to investigate the formation of nitrogenous_DBPs (N-DBPs) under extreme conditions caused by climate change. For this reason, two scenarios were adapted: a) sea level rise leading to increase of water salinity and b) heavy rainfall incidents leading to flooding events. The target-compounds were haloacetonitriles (HANs), haloacetamides (HAcAms) and halonitromethane (TCNM). Chlorination and chloramination were employed as disinfection processes under different doses (5 and 10 mg/L) and contact times (24 and 72 h). The results showed enhancement on the formation of N-DBPs and changes in their profile. Sea level rise scenario led to elevated concentrations of brominated species (maximum concentration of dibromoacetonitrile 23 μg/L and maximum concentration of bromoacetamide 57 μg/L), while flooding events scenario led to extended formation of chloroacetamide and bromochloroacetonitrile up to 58 μg/L and 40 μg/L, respectively. At the same time, changes in cytotoxicity and genotoxicity of the samples were observed.
Collapse
Affiliation(s)
- Argyri Kozari
- Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece.
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece.
| |
Collapse
|
5
|
Fernández-Pascual E, Droz B, O’Dwyer J, O’Driscoll C, Goslan EH, Harrison S, Weatherill J. Fluorescent Dissolved Organic Matter Components as Surrogates for Disinfection Byproduct Formation in Drinking Water: A Critical Review. ACS ES&T WATER 2023; 3:1997-2008. [PMID: 37588806 PMCID: PMC10425960 DOI: 10.1021/acsestwater.2c00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 08/18/2023]
Abstract
Disinfection byproduct (DBP) formation, prediction, and minimization are critical challenges facing the drinking water treatment industry worldwide where chemical disinfection is required to inactivate pathogenic microorganisms. Fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC) is used to characterize and quantify fluorescent dissolved organic matter (FDOM) components in aquatic systems and may offer considerable promise as a low-cost optical surrogate for DBP formation in treated drinking waters. However, the global utility of this approach for quantification and prediction of specific DBP classes or species has not been widely explored to date. Hence, this critical review aims to elucidate recurring empirical relationships between common environmental fluorophores (identified by PARAFAC) and DBP concentrations produced during water disinfection. From 45 selected peer-reviewed articles, 218 statistically significant linear relationships (R2 ≥ 0.5) with one or more DBP classes or species were established. Trihalomethanes (THMs) and haloacetic acids (HAAs), as key regulated classes, were extensively investigated and exhibited strong, recurrent relationships with ubiquitous humic/fulvic-like FDOM components, highlighting their potential as surrogates for carbonaceous DBP formation. Conversely, observed relationships between nitrogenous DBP classes, such as haloacetonitriles (HANs), halonitromethanes (HNMs), and N-nitrosamines (NAs), and PARAFAC fluorophores were more ambiguous, but preferential relationships with protein-like components in the case of algal/microbial FDOM sources were noted. This review highlights the challenges of transposing site-specific or FDOM source-specific empirical relationships between PARAFAC component and DBP formation potential to a global model.
Collapse
Affiliation(s)
- Elena Fernández-Pascual
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Boris Droz
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Jean O’Dwyer
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
- iCRAG
Science Foundation Ireland Research Centre in Applied Geosciences, University College Dublin, Dublin D04 V1W8, Ireland
| | | | - Emma H. Goslan
- Cranfield
Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Simon Harrison
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - John Weatherill
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
- iCRAG
Science Foundation Ireland Research Centre in Applied Geosciences, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
6
|
Zhang X, Duan N, Jiang L, Xu F, Li W. Comparative Investigation of the Spectroscopic Behavior Based on High-Concentrated Solution in Nitrogen and Air Atmospheres. Int J Mol Sci 2023; 24:12629. [PMID: 37628810 PMCID: PMC10454424 DOI: 10.3390/ijms241612629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In order to accurately obtain photometric information of high concentration SO42- and other substances in the process industry, the spectroscopy behavior of SO42-, S2-, Ni2+ and Cu2+ in air and nitrogen atmosphere was compared based on the UV-visible spectrophotometer with a nitrogen replacing the oxygen. Different from Ni2+ and Cu2+, the accuracy of SO42- and S2- in the ultraviolet region was effectively improved by using a nitrogen atmosphere (P detection results were regressed within the limited standard range, RE < 5%). The nitrogen atmosphere suppressed the additional light attenuation caused by its absorption of ultraviolet rays by isolating oxygen and was also reflected in the decrease in the degree of red shift of the characteristic wavelength for SO42- with increasing concentration. Therefore, the detection results of SO42- showed an effective improvement in sensitivity. Nevertheless, according to the complementary experimental results and theoretical calculations, in addition to oxygen absorption, the low detection accuracy of SO42- high concentration is also attributed to the reduction of the energy required for electronic excitation per unit group caused by the interaction between SO42- groups, resulting in a deviation of the C-A curve from linearity at high concentrations. The influence of this intermolecular force on the detection results is far more important than oxygen absorption. The research can provide reliable theoretical guidance and technical support for the pollution-free direct measurement of high-concentration solutions in the process industry and promote the sustainable development of the process industry.
Collapse
Affiliation(s)
- Xuefei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
| | - Ning Duan
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (F.X.); (W.L.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Linhua Jiang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (F.X.); (W.L.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fuyuan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (F.X.); (W.L.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weidong Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (F.X.); (W.L.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Xu S, Wu Y, Bu L, Deng L, Li G, Zhou S, Shi Z. Molecular insights towards changing behaviors of organic matter in a full-scale water treatment plant using FTICR-MS. CHEMOSPHERE 2023; 330:138731. [PMID: 37086984 DOI: 10.1016/j.chemosphere.2023.138731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The changing behavior of organic matter in a full-scale water treatment process was characterized based on the three-dimensional excitation-emission matrix (3D-EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Polyaluminum chloride (PAC) as a coagulant can help to effectively remove soluble microbial by-products-like and aromatic protein-like substances during coagulation and sedimentation, corresponding to tannin and coagulated aromatic regions. The leakage of soluble microbial products during sand filtration resulted in an increase in the intensity of biomass-like regions. Nitrogen-containing compounds have higher weighted average value of double bond equivalents (DBEw) and the modified aromaticity index (AImod-w) than nitrogen-free compounds. Water treatment can preferentially remove unsaturated nitrogen-containing compounds with more O atoms and higher-oxidation-state carbon. The dissolved organic carbon (DOC) and UV254 were not correlated well with changes in nitrogen-containing compounds due to the preferential removal of nitrogen-containing compounds. This study revealed the specificity of organic matter removal during water treatment, and it was helpful in optimizing treatment processes for various raw water to ensure water quality.
Collapse
Affiliation(s)
- Shunkai Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Beijing General Municipal Engineering Design & Research Institute Co. Ltd., Beijing 100082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Guangchao Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
8
|
Cavalcante RP, Malvestiti JA, Júnior JPD, Dantas RF. Modeling carbonate/bicarbonate and nitrate disturbance during secondary effluent disinfection by UV/H 2O 2 and UV/ozone. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2943-2962. [PMID: 36515198 DOI: 10.2166/wst.2022.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The disinfection of effluents has been considered the main step to inactivate pathogenic organisms to prevent the spread of waterborne diseases. The variation in the matrix composition can lead to the use of inadequate oxidant dose and disturb a correct treatment. The objective of this study was to develop a simple and practical mathematical model to simulate the disturbance of inorganic anions (CO32-/HCO3- and NO3-) during secondary effluent disinfection by UV/H2O2 and UV/O3. The pathogenic agents chosen for this study were total coliforms and E. coli. To build the mathematical model, a modification of the Chick model (referred to as 'Modified Chick Model') was proposed by employing a weighted average in the calculation of the kinetic constant. Both treatments were affected by the presence of the anions. However, with the highest NO3- concentration, less inhibition of disinfection was observed in the UV/H2O2. The use of the arithmetic means to calculate the value of k, as indicated by the Chick model, demonstrates a lesser precision in the prediction of the microorganisms' concentrations. On the other hand, using the Modified Chick Model, a better prediction of the inactivation of the microorganisms was obtained, which can be confirmed by the validation performed.
Collapse
Affiliation(s)
- Rodrigo Pereira Cavalcante
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, Limeira, SP 13484-332, Brazil E-mail:
| | - Jacqueline Aparecida Malvestiti
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, Limeira, SP 13484-332, Brazil E-mail: ; Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Piracicaba, SP 13400-970, Brazil
| | - José Paulo Diogo Júnior
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, Limeira, SP 13484-332, Brazil E-mail:
| | - Renato Falcao Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, Limeira, SP 13484-332, Brazil E-mail:
| |
Collapse
|
9
|
Correlation Analysis of the Carboxyl and Carbonyl Groups of Natural Organic Matter and the Formation Potential of Trihalomethanes and Chloral Hydrate. Molecules 2022; 27:molecules27217454. [DOI: 10.3390/molecules27217454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Natural organic matter (NOM) has always been considered the main precursor of disinfection by-products (DBPs) during the chlorine disinfection of drinking water. This research focuses on investigating the correlation between the functional group (carboxyl and carbonyl groups) content of NOM and the formation of trichloromethane (TCM) and chloral hydrate (CH). The quantitative determination of carboxyl groups, carbonyl groups, TCM, and CH were conducted during the drinking water treatment processes with different coagulant dosages and with/without pre-oxidation by KMnO4 or NaClO. The most appropriate coagulant for the removal of conventional components was polyaluminum chloride (PAC), and the dosage was 110 mg/L. Up to 43.7% and 14.5% of the carboxyl and carbonyl groups, respectively, were removed through the coagulation and sedimentation processes, which can be enhanced by increasing PAC dosage. The filtration process further increased the removal rates of these two functional groups to 59.8% and 33.5%, respectively. The formation potential of the TCM and CH decreased as the PAC dosage increased. Pre-oxidation by KMnO4 (0.8–1.0 mg/L) effectively controlled the formation of DBPs while increasing the carboxyl and carbonyl group content. Pre-oxidation by NaClO decreased the formation of TCM rather than CH, and a suitable amount (0.5–1.0 mg/L) decreased the carboxyl and carbonyl groups. It was found that there was a good linear correlation between carboxyl groups and TCM and CH. The linear fit R2 values of the carboxyl groups to TCM and CH were 0.6644 and 0.7957, respectively. The linear fit R2 values of the carbonyl groups to TCM and CH were 0.5373 and 0.7595, respectively.
Collapse
|
10
|
Development and Application of a Hydrogeochemical Model for the Groundwater Treatment Process in Waterworks. WATER 2022. [DOI: 10.3390/w14132103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drinking water quality is one of the most important factors affecting human health. The task of the waterworks is to purify raw water into drinking water. The quality of drinking water depends on two major factors: the raw water quality, and the treatment measures that are applied in the waterworks. Since the raw water quality develops over time, it must be determined whether the treatment measures currently used are also suitable when the raw water quality changes. For this reason, a hydrogeochemical model relevant to the drinking water quality during the treatment process was developed. By comparing the modeled results with the measured values, with the exception of chloride and sodium, all other relevant water quality parameters were consistent with one another. Therefore, the model proved to be plausible. This was also supported by the results of mass balance. The model can be used to forecast the development of drinking water quality, and can be applied as a tool to optimize the treatment measures if the raw water conditions change in the future.
Collapse
|
11
|
Phinyothanmakorn N, Prasert T, Ngernyen Y, Siripattanakul-Ratpukdi S, Phungsai P. Characterization of molecular dissolved organic matter removed by modified eucalyptus-based biochar and disinfection by-product formation potential using Orbitrap mass spectrometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153299. [PMID: 35074379 DOI: 10.1016/j.scitotenv.2022.153299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar is an alternative adsorbent, with similar characteristics to activated carbon, that can be applied to water treatment to remove dissolved organic matter (DOM) as disinfection by-product (DBP) precursors with comparable efficiency and better cost-effectiveness and sustainability relative to commercial alternatives. We applied non-targeted analysis with Orbitrap mass spectrometry to investigate changes in molecular DOM and DBP formation after treating DOM-containing water with biochar. Two surface water sources, Phong River (PR) in Khon Kaen, Thailand and Suwannee river (SR), USA, were tested using three types of eucalyptus-derived biochar (i.e., KOH-modified, calcined, and both) were selected as adsorbents and compared to commercial coconut-based activated carbon (ccAC). The results showed that calcination increased the surface area, pore volume, and functional groups of biochar responsible for adsorption. The calcined biochar achieved higher DOC removal efficiencies for both rivers than other adsorbents. PR contains more adsorbable DOM as over 800 molecules with carbon, hydrogen, and oxygen (CHO) features that were decreased or totally removed by all adsorbents. In contrast, for SR treatment, KOH-modified and calcined biochar was found to decrease over 800 CHO features, compared to around 500 and 400 CHO features for calcined biochar and ccAC, respectively. However, numerous background CHO features with reduced character (i.e., low degree of oxidation) were found after water treatment by calcined biochar, resulting in higher DBP formation after chlorination compared to the other adsorbents. The results of this study have important implications for future preparation of biochar for water treatment.
Collapse
Affiliation(s)
- Naruemon Phinyothanmakorn
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thirawit Prasert
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuvarat Ngernyen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sumana Siripattanakul-Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Phanwatt Phungsai
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
12
|
Wang Y, Li L, Sun Z, Dong H, Yu J, Qiang Z. Removal of disinfection by-product precursors in drinking water treatment processes: Is fluorescence parallel factor analysis a promising indicator? JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126298. [PMID: 34119980 DOI: 10.1016/j.jhazmat.2021.126298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
This work investigated the removal efficiency of disinfection by-product (DBP) precursors by different drinking water treatment processes and evaluated the feasibility of using fluorescence components removal as an indicator. A four-component (including tryptophan-like, protein-bound, tyrosine-like, and humic-like components) parallel factor analysis model was developed basing on 288 fluorescence excitation-emission matrices. Among all treatment processes, coagulation-sedimentation process showed the best performance, with mean removal ratios of 30% in total fluorescence intensity and 31% in total formation potential (FP) of DBPs, respectively. It preferentially removed humic-like component C4 (43%). Advanced treatment processes were less effective in comparison. Ozone and biological activated carbon (BAC) combined process reduced 20% of total fluorescence intensity, while ultrafiltration process reduced < 3%. Ozonation and BAC filtration preferentially removed free amino acids (i.e., C1 and C3) and protein-bound (i.e., C2) components, with mean removal ratios of 12% and 17%, respectively. Significant correlations (p < 0.01, double-tailed) were observed between four fluorescence components removal and FPs reduction of three trihalomethanes, dichloroacetonitrile (DCAN), and 1,1-dichloropropanone (1,1-DCP). Specifically, the correlation coefficients for three trihalomethanes and 1,1-DCP followed the order of C4 > C1 > C2 > C3, while the order for DCAN was C2 > C4 > C1 > C3.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingfei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|