1
|
Grira A, Antiñolo M, Canosa A, Tomas A, El Dib G, Jiménez E. Kinetic and Products Study of the Atmospheric Degradation of trans-2-Hexenal with Cl Atoms. J Phys Chem A 2022; 126:6973-6983. [PMID: 36166752 PMCID: PMC9549468 DOI: 10.1021/acs.jpca.2c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas-phase reaction between trans-2-hexenal (T2H) and chlorine atoms (Cl) was studied using three complementary experimental setups at atmospheric pressure and room temperature. In this work, we studied the rate constant for the titled oxidation reaction as well as the formation of the gas-phase products and secondary organic aerosols (SOAs). The rate constant of the T2H + Cl reaction was determined using the relative method in a simulation chamber using proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) to monitor the loss of T2H and the reference compound. An average reaction rate constant of (3.17 ± 0.72) × 10-10 cm3 molecule-1 s-1 was obtained. From this, the atmospheric lifetime of T2H due to Cl reaction was estimated to be 9 h for coastal regions. HCl, CO, and butanal were identified as primary products using Fourier transform infrared spectroscopy (FTIR). The molar yield of butanal was (6.4 ± 0.3)%. Formic acid was identified as a secondary product by FTIR. In addition, butanal, 2-chlorohexenal, and 2-hexenoic acid were identified as products by gas chromatography coupled to mass spectrometry but not quantified. A reaction mechanism is proposed based on the observed products. SOA formation was observed by using a fast mobility particle sizer spectrometer. The measured SOA yields reached maximum values of about 38% at high particle mass concentrations. This work exhibits for the first time that T2H can be a source of SOA in coastal atmospheres, where Cl concentrations can be high at dawn, or in industrial areas, such as ceramic industries, where Cl precursors may be present.
Collapse
Affiliation(s)
- Asma Grira
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, F-35000 Rennes, France.,IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Center for Energy and Environment, F-59000 Lille, France
| | - María Antiñolo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain.,Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - André Canosa
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, F-35000 Rennes, France
| | - Alexandre Tomas
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Center for Energy and Environment, F-59000 Lille, France
| | - Gisèle El Dib
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, F-35000 Rennes, France
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain.,Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
2
|
Xiao W, Sun S, Yan S, Wu W, Sun J. Theoretical study on the formation of Criegee intermediates from ozonolysis of pentenal: An example of trans-2-pentenal. CHEMOSPHERE 2022; 303:135142. [PMID: 35636604 DOI: 10.1016/j.chemosphere.2022.135142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the reaction mechanism and kinetics of ozone with trans-2-pentenal using density functional theory (DFT) and conventional transition state theory (CTST). At 298 K and 1 atm, the gas-phase reaction mechanisms and kinetic parameters were calculated at the level of CCSD(T)/6-311+G(d,p)//M06-2X/6-311+G(d,p). Both CC and CO bond cycloaddition as well as hydrogen abstraction were found. The calculations indicated that the main reaction path is 1,3-dipole cycloaddition reactions of ozone with CC bond with the relatively lower syn-energy-barrier of 3.35 kcal mol-1 to form primary ozonide which decomposed to produce a carbonyl oxide called a Criegee intermediate (CI) and an aldehyde. The subsequent reactions of CIs were analysed in detail. It is found that the reaction pathways of the novelty CIs containing an aldehyde group are extremely similar with general CIs when they react with NO, NO2, SO2, H2O, CH2O and O2. The condensed Fukui function were calculated to identify the active site of the chosen molecules. At 298 K and 1 atm, the reaction rate coefficient was 9.13 × 10-18 cm3 molecule-1 s-1 with atmospheric lifetime of 1.3 days. The calculated rate constant is in general agreement with the available experimental data. The branching ratios indicated that syn-addition pathways are prior to anti-addition. The atmospheric ratios for CIs formation and the bimolecular reaction rate constants for the Criegee intermediates with the variety of partners were calculated. Our theoretical results are of importance in atmospheric chemistry of unsaturated aldehyde oxidation by ozone.
Collapse
Affiliation(s)
- Weikang Xiao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| | - Simei Sun
- Huangshi Key Laboratory of Photoelectric Technology and Materials, College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, PR China
| | - Suding Yan
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, PR China
| | - Wenzhong Wu
- College of Foreign Languages, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| | - Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China.
| |
Collapse
|