1
|
Wang Z, Zhang R, Li Y, Zhang Q, Wang W, Wang Q. Computational study on the endocrine-disrupting metabolic activation of Benzophenone-3 catalyzed by cytochrome P450 1A1: A QM/MM approach. CHEMOSPHERE 2024; 358:142238. [PMID: 38705413 DOI: 10.1016/j.chemosphere.2024.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.
Collapse
Affiliation(s)
- Zijian Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ruiming Zhang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
2
|
Deng WH, Liao RZ. Cysteine Radical and Glutamate Collaboratively Enable C-H Bond Activation and C-N Bond Cleavage in a Glycyl Radical Enzyme HplG. J Chem Inf Model 2024; 64:4168-4179. [PMID: 38745447 DOI: 10.1021/acs.jcim.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydroxyprolines are abundant in nature and widely utilized by many living organisms. Isomerization of trans-4-hydroxy-d-proline (t4D-HP) to generate 2-amino-4-ketopentanoate has been found to need a glycyl radical enzyme HplG, which catalyzes the cleavage of the C-N bond, while dehydration of trans-4-hydroxy-l-proline involves a homologous enzyme of HplG. Herein, molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations are employed to understand the reaction mechanism of HplG. Two possible reaction pathways of HplG have been explored to decipher the origin of its chemoselectivity. The QM/MM calculations reveal that the isomerization proceeds via an initial hydrogen shift from the Cγ site of t4D-HP to a catalytic cysteine radical, followed by cleavage of the Cδ-N bond in t4D-HP to form a radical intermediate that captures a hydrogen atom from the cysteine. Activation of the Cδ-H bond in t4D-HP to bring about dehydration of t4D-HP possesses an extremely high energy barrier, thus rendering the dehydration pathway implausible in HplG. On the basis of the current calculations, conserved residue Glu429 plays a pivotal role in the isomerization pathway: the hydrogen bonding between it and t4D-HP weakens the hydroxyalkyl Cγ-Hγ bond, and it acts as a proton acceptor to trigger the cleavage of the C-N bond in t4D-HP. Our current QM/MM calculations rationalize the origin of the experimentally observed chemoselectivity of HplG and propose an H-bond-assisted bond activation strategy in radical-containing enzymes. These findings have general implications on radical-mediated enzymatic catalysis and expand our understanding of how nature wisely and selectively activates the C-H bond to modulate catalytic selectivity.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Ma G, Ma K, Zhang J, Zhao X, Wang Q, Chen Y, Lu J, Wei X, Wang X, Yu H. Mechanistic insight into biotransformation of novel triazine-based flame retardant 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione by human cytochrome P450s. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123883. [PMID: 38548154 DOI: 10.1016/j.envpol.2024.123883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Kan Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jing Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xianglong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Qiuyi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Yewen Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jiayu Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shuren Street 8, 310015, Hangzhou, China.
| |
Collapse
|
4
|
Ma G, Wang Q, Ma K, Chen Y, Lu J, Zhang J, Wang X, Wei X, Yu H. Enantioselective metabolism of novel chiral insecticide Paichongding by human cytochrome P450 3A4: A computational insight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122088. [PMID: 37348694 DOI: 10.1016/j.envpol.2023.122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
As a novel chiral neonicotinoid insecticide, Paichongding (IPP) has been widely applied in agriculture due to its excellent insecticidal activity. However, the enantioselective metabolism of IPP stereoisomers (5R7R-IPP, 5S7S-IPP, 5R7S-IPP, and 5S7R-IPP) mediated by enzymes in non-target organisms, especially the cytochrome P450s (CYPs), remains unknown. To address this knowledge gap, we developed an integrated computational framework to elucidate the binding interactions and enantioselective metabolism of IPP stereoisomers in human CYP3A4. The results reveal that 5R7R-IPP shows much stronger binding affinity to CYP3A4 than 5S7S-IPP, while enantiomers 5R7S-IPP and 5S7R-IPP have no essential difference in their binding potential, owing to their specific interactions with key CYP3A4 residues. Although enantiomers 5R7R-IPP and 5S7S-IPP feature distinct binding modes resulting from the chiral differences, their transformation activities are slightly different, with C5 and C13 being the primary metabolic sites, respectively. In contrast, CYP3A4 preferably metabolizes 5R7S-IPP over 5S7R-IPP. The metabolism of epimers 5R7R-IPP and 5R7S-IPP share C5-hydroxylation routes due to the conserved 5R-conformaitons, but differ with the transformation routes at C11/C13 and C3 sites. The 7R-chirality of 5S7R-IPP significantly reduces the metabolic potency compared to 5S7S-IPP. CYP3A4-catalyzed hydroxylation and desaturation of IPP stereoisomers generate various chiral metabolites, with C5- and C13-hydroxyIPPs further transforming into depropylated products. Furthermore, the toxicity assessment reveals that IPP, along with the majority of its hydroxylated, desaturated, and depropylated metabolites, can potentially induce adverse effects on human health, specifically hepatotoxicity, respiratory toxicity, and carcinogenicity. This study provides valuable insights into the enantioselective fate of chiral IPP metabolism by CYP3A4, and the identified metabolites can serve as potential biomarkers for monitoring IPP exposure and associated health risk in human body.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Qiuyi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Kan Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Yewen Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jiayu Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jing Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China.
| |
Collapse
|
5
|
Gao Y, Hu X, Deng C, Wang M, Niu X, Luo N, Ji Y, Li G, An T. New insight into molecular mechanism of P450-Catalyzed metabolism of emerging contaminants and its consequence for human health: A case study of preservative methylparaben. ENVIRONMENT INTERNATIONAL 2023; 174:107890. [PMID: 37001212 DOI: 10.1016/j.envint.2023.107890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Hydroxylated metabolites in the living body are considered as a potential biomarker of exposure to emerging contaminations (ECs) and breast cancer, but their formation mechanism has not received enough attention. Besides, the adverse impacts of metabolites during the metabolic transformation of ECs largely remain unknown. In this study, we employed a density functional calculation combing with in-vitro incubation of human liver microsomes to explore the bio-transformation of preservative methylparaben (MPB) in human bodies. Our results showed that hydroxylated metabolites of MPB (OH-MPB) were observed experimentally, while a formation mechanism was revealed at the molecular level. That is, hydroxylated metabolite was exclusively formed via the hydrogen abstraction from the phenolic hydroxyl group of MPB followed by the OH-rebound pathway, rather than the direct hydroxylation on the benzene ring. The increasing of hydroxyl groups on ECs could improve the metabolisms. This was confirmed in the metabolism of ECs without hydroxyl group and with multiple-hydroxyl groups, respectively. Furthermore, toxicity assessments show that compared to parent MPB, the hydroxylated metabolites have increased negative impacts on the gastrointestinal system and liver. A semiquinone product exhibits potential damage in the cardiovascular system and epoxides are toxic to the blood and gastrointestinal system. The findings deepen our insight into the biotransformation of parabens in human health, especially by providing health warnings about the potential impacts caused by semiquinone and epoxides.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyue Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Xu Q, Li J, Cao S, Ma G, Zhao X, Wang Q, Wei X, Yu H, Wang Z. Thyroid hormone activities of neutral and anionic hydroxylated polybrominated diphenyl ethers to thyroid receptor β: A molecular dynamics study. CHEMOSPHERE 2023; 311:136920. [PMID: 36273606 DOI: 10.1016/j.chemosphere.2022.136920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been identified as the strong endocrine disrupting chemicals to humans, which show structural similarity with endogenous thyroid hormones (THs) and thus disrupt the functioning of THs through competitive binding with TH receptors (TRs). Although previous studies have reported the hormone activities of some OH-PBDEs on TH receptor β (TRβ), the interaction mechanism remains unclear. Furthermore, hydroxyl dissociation of OH-PBDEs may alter their TR disrupting activities, which has not yet been investigated in depth. In this work, we selected 18 OH-PBDEs with neutral and anionic forms and performed molecular dynamics (MD) simulations to estimate their binding interactions with the ligand binding domain (LBD) of TRβ. The results demonstrate that most of OH-PBDEs have stronger binding affinities to TRβ-LBD than their anionic counterparts, and the hydroxyl dissociation of ligands differentiate the major driving force for their binding. More Br atoms in OH-PBDEs can result in stronger binding potential with TRβ-LBD. Moreover, 5 hydrophobic residues, including Met313, Leu330, Ile276, Leu346, and Phe272, are identified to have important contributions to bind OH-PBDEs. These results clarify the binding mechanism of OH(O-)-PBDEs to TRβ-LBD at the molecular level, which can provide a solid theoretical basis for accurate assessment of TH disrupting effects of these chemicals.
Collapse
Affiliation(s)
- Qi Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jian Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China; Institute of Physical Oceanography and Remote Sensing, Ocean College, Zhejiang University, Zheda Road 1, 316021, Zhoushan, China
| | - Shang Cao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China.
| | - Xianglong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Qiuyi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China.
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
7
|
Sun Y, Zeng Y, Rajput IR, Sanganyado E, Zheng R, Xie H, Li C, Tian Z, Huang Y, Yang L, Lin J, Li P, Liang B, Liu W. Interspecies differences in mammalian susceptibility to legacy POPs and trace metals using skin fibroblast cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120358. [PMID: 36228850 DOI: 10.1016/j.envpol.2022.120358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The susceptibility to trace metals and legacy POPs is different between terrestrial and marine mammals. In this study, we established the first cell line from Indo-Pacific finless porpoises and compared the cellular responses of skin fibroblast cells from Pygmy killer whales, Pantropic spotted dolphins, Indo-Pacific finless porpoises, mice, and humans following exposure to copper, methylmercury, cadmium, PCB126, PCB153, and BDE47 to better understand the interspecies sensitivities of mammals to chemical pollutants. We conducted a risk assessment by comparing no-observed effect concentrations (NOEC), lowest-observed effect concentrations (LOEC), and half maximal effective concentrations (EC50) from cell viability assays and previously reported pollutant body burdens in mammals. Based on the in vitro data, Indo-Pacific finless porpoises were more sensitive to copper and methylmercury than other mammals. PCB153 exposure reduced cell viability in all mammals except humans, while PCB126 was more potent, with 13.33 μg/mL exposure reducing cell viability in all mammals. In contrast, BDE47 exposure reduced cell viability only in terrestrial mammals in addition to pantropic spotted dolphin. Based on the in vitro data and the natural context of metal concentrations, both methylmercury and cadmium posed a higher risk to cetaceans than human, while copper posed a lower risk to cetaceans. All three legacy POPs (PCB126, PCB153, and BDE47) posed minor risk to cetaceans for short-term exposure. This study demonstrated that a species-specific in vitro model may provide more accurate information on the potential risk of pollutants to mammals. However, due to the bioamplification of POPs and their potential impact on the endocrine system and immune system of cetaceans, risk assessment with long-term exposure with more in vitro models should be further studied.
Collapse
Affiliation(s)
- Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Imran Rashid Rajput
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Faculty of Veterinary and Animal Science, Department of Biotechnology, Lasbela University of Agriculture Water and Marine Science, 89250, Uthal, Balochistan, Pakistan
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE2 4PB, UK
| | - Ruiqiang Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; China Blue Sustainability Institute, Haikou, Hainan, 570208, China
| | - Huiying Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Liangliang Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jianqing Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
8
|
Zhou J, Zhang X, Li Y, Feng S, Zhang Q, Wang W. Endocrine-disrupting metabolic activation of 2-nitrofluorene catalyzed by human cytochrome P450 1A1: A QM/MM approach. ENVIRONMENT INTERNATIONAL 2022; 166:107355. [PMID: 35751956 DOI: 10.1016/j.envint.2022.107355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Nitropolycyclic aromatic hydrocarbons (NPAHs) present one of the most important airborne pollutants. Recent studies have shown that one of the most abundant NPAHs, 2-Nitrofluorene (NF), was supposed to be converted to endocrine-disrupting metabolites by cytochrome P450 1A1 (CYP1A1) in human cells. However, the mechanism is still largely unexplored. Here the metabolic activation and transformation mechanism of NF catalyzed by CYP1A1 were systematically studied with the aid of Molecular Dynamics, Density Functional Theory and Quantum Mechanics/Molecular Mechanics techniques. We evidence that CYP1A1 can activate NF through two elementary processes: (i) electrophilic addition (12.4 kcal·mol-1) or hydrogen abstraction (38.2 kcal·mol-1) and (ii) epoxidation (5.9 and 8.7 kcal·mol-1) or NIH shift (12.5 and 14.9 kcal·mol-1) or proton shuttle (12.1 kcal·mol-1). Electrophilic addition was found to be the rate-determining step while epoxidation rather than NIH shift or proton shuttle is the more feasible pathway after electrophilic addition. Metabolites 6,7-epoxide-2-nitrofluorene and 7,8-epoxide-2-nitrofluorene were identified as the major epoxidation products. Epoxides are unstable and easy to react with hydrated hydrogen ions and hydroxyls to produce endocrine disrupter 7-hydroxy-2-nitrofluorene. Toxic analysis shows that some of the metabolites are more toxic to model aquatic organisms (e.g. Green algea) than NF. Binding affinity analysis to human sex hormone binding globulin reveals that NF metabolites all have endocrine-disrupting potential. This study provides a comprehensive understanding on the biotransformation process of NF and may aid future studies on various NPAHs activation catalyzed by human P450 enzyme.
Collapse
Affiliation(s)
- Junhua Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
9
|
Computational Insight into Biotransformation Profiles of Organophosphorus Flame Retardants to Their Diester Metabolites by Cytochrome P450. Molecules 2022; 27:molecules27092799. [PMID: 35566150 PMCID: PMC9102461 DOI: 10.3390/molecules27092799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory (DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD) simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites.
Collapse
|