1
|
Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1274-1294. [PMID: 38578151 DOI: 10.1111/jipb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
Collapse
Affiliation(s)
- Jie Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
2
|
Zeng Y, Molnárová M, Motola M. Metallic nanoparticles and photosynthesis organisms: Comprehensive review from the ecological perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120858. [PMID: 38614005 DOI: 10.1016/j.jenvman.2024.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
This review presents a comprehensive analysis of the ecological implications of metallic nanoparticles (MNPs) on photosynthetic organisms, particularly plants and algae. We delve into the toxicological impacts of various MNPs, including gold, silver, copper-based, zinc oxide, and titanium dioxide nanoparticles, elucidating their effects on the growth and health of these organisms. The article also summarizes the toxicity mechanisms of these nanoparticles in plants and algae from previous research, providing insight into the cellular and molecular interactions that underpin these effects. Furthermore, it discusses the reciprocal interactions between different types of MNPs, their combined effects with other metal contaminants, and compares the toxicity between MNPs with their counterpart. This review highlights the urgent need for a deeper understanding of the environmental impact, considering their escalating use and the potential risks they pose to ecological systems, especially in the context of photosynthetic organisms that are vital to ecosystem health and stability.
Collapse
Affiliation(s)
- Yilan Zeng
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic; Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| | - Marianna Molnárová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Zhang Y, Huang Y, Jiang J, Chen J, Han W, Liu Y, Kong L, Gong J, Su M, Chen D. Transfer, transportation, and adsorption of UV-B by Mg-N co doped carbon quantum dots: Response of growth indicators, antioxidant effect and mechanism explanation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123618. [PMID: 37976574 DOI: 10.1016/j.saa.2023.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Mg and N co-doped carbon quantum dots (Mg-N-CQDs) were synthesized and applied to alleviate oxygen toxicity by UV-B radiation and enhance antioxidative responses to wheat seedlings. It showed that Mg-N-CQDs pre-treatment attenuated the UV-B stress effects in a dose-dependent manner, as indicated by enhancing the characteristics of seed germination and early seedling growth parameters. Meanwhile, Mg-N-CQDs can be applied in plant nutrient solutions with nitrogen, phosphorus, potassium, and other fertilizers to promote the growth of seedlings. Furthermore, efficient antioxidant systems, chlorophyll content, and stability of fluorescence intensity were activated by Mg-N-CQDs pre-treatment, which effectively increased the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and eliminate the contents of malondialdehyde (MDA) and hydrogen peroxide, and the production rate of superoxide anion radical in the roots and germs, thereby preventing oxidative damage from UV-B stress. Notably, Mg-N-CQDs pre-treatment significantly increased the expression of related genes to improve the antioxidant capacity of roots and germs, resulting in an increased level of ATPS, CS, and GS. The mechanism study indicated that amino and hydroxyl groups and Mg, N modified CQDs could broaden the light absorption range of CQDs and improve the ability to convert blue light and ultraviolet rays to visible light, which was the main reason why Mg-N-CQDs could relieve wheat seedlings from ultraviolet stress. Therefore, Mg-N-CQDs could serve as a regulator to reduce the damage of UV-B, laying the foundation for their application in environmental protection and agricultural production.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; College of Chemical Engineering, Daqing Normal University, Daqing 163712, PR China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Junhong Jiang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jianbo Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Weixing Han
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yuxian Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Linjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Wang J, Gong Y, Yan X, Han R, Chen H. CdTe-QDs Affect Reproductive Development of Plants through Oxidative Stress. TOXICS 2023; 11:585. [PMID: 37505551 PMCID: PMC10386043 DOI: 10.3390/toxics11070585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
With the continuous development of industry, an increasing number of nanomaterials are widely used. CdTe-QDs is a nanomaterial with good optical properties, but its release into the natural environment may pose a potential threat. The toxicity of nanoparticles in plants is beginning to be questioned, and the effect on phytotoxicity is unclear. In this study, we simulated air pollution and soil pollution (CdTe-QDs concentrations of 0, 0.2, 0.4, 0.8 mmol/L) by spraying and watering the seedlings, respectively. We determined the transport pathways of CdTe-QDs in Arabidopsis thaliana and their effects on plant reproductive growth. Spraying CdTe-QDs concentration >0.4 mmol/L significantly inhibited the formation of fruit and decreased the number of seeds. Observation with a laser confocal scanning microscope revealed that CdTe-QDs were mainly transported in plants through the vascular bundle, and spraying increased their accumulation in the anthers and ovaries. The expression level of genes associated with Cd stress was analyzed through RT-qPCR. CdTe-QDs significantly increased the expression levels of 10 oxidative stress-related genes and significantly decreased the expression levels of four cell-proliferation-related genes. Our results reveal for the first time the transport of CdTe-QDs in Arabidopsis flowers and demonstrate that QDs can cause abnormal pollen morphology, form defects of pollen vitality, and inhibit pollen tube growth in Arabidopsis through oxidative damage. These phenomena ultimately lead to the inability of Arabidopsis to complete the normal fertilization process and affect the reproductive growth of the plant.
Collapse
Affiliation(s)
- Jianhua Wang
- Upgrading Office of Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
| | - Yan Gong
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xiaoyan Yan
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Rong Han
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Huize Chen
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| |
Collapse
|
5
|
Amor N, Noman MT, Petru M. Prediction of Methylene Blue Removal by Nano TiO 2 Using Deep Neural Network. Polymers (Basel) 2021; 13:polym13183104. [PMID: 34578005 PMCID: PMC8473325 DOI: 10.3390/polym13183104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
This paper deals with the prediction of methylene blue (MB) dye removal under the influence of titanium dioxide nanoparticles (TiO2 NPs) through deep neural network (DNN). In the first step, TiO2 NPs were prepared and their morphological properties were analysed by scanning electron microscopy. Later, the influence of as synthesized TiO2 NPs was tested against MB dye removal and in the final step, DNN was used for the prediction. DNN is an efficient machine learning tools and widely used model for the prediction of highly complex problems. However, it has never been used for the prediction of MB dye removal. Therefore, this paper investigates the prediction accuracy of MB dye removal under the influence of TiO2 NPs using DNN. Furthermore, the proposed DNN model was used to map out the complex input-output conditions for the prediction of optimal results. The amount of chemicals, i.e., amount of TiO2 NPs, amount of ehylene glycol and reaction time were chosen as input variables and MB dye removal percentage was evaluated as a response. DNN model provides significantly high performance accuracy for the prediction of MB dye removal and can be used as a powerful tool for the prediction of other functional properties of nanocomposites.
Collapse
|