1
|
Jin J, Zhao D, Wang J, Wang Y, Zhu H, Wu Y, Fang L, Bing H. Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135438. [PMID: 39116750 DOI: 10.1016/j.jhazmat.2024.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microorganisms are pivotal in sustaining soil functions, yet the specific contributions of bacterial and fungal succession on the functions during vegetation restoration in metallic tailing reservoirs remains elusive. Here, we explored bacterial and fungal succession and their impacts on soil multifunctionality along a ∼50-year vegetation restoration chronosequence in China's largest vanadium titano-magnetite tailing reservoir. We found a significant increase in soil multifunctionality, an index comprising factors pertinent to soil fertility and microbially mediated nutrient cycling, along the chronosequence. Despite increasing heavy metal levels, both bacterial and fungal communities exhibited significant increase in richness and network complexity over time. However, fungi demonstrated a slower succession rate and more consistent composition than bacteria, indicating their relatively higher resilience to environmental changes. Soil multifunctionality was intimately linked to bacterial and fungal richness or complexity. Nevertheless, when scrutinizing both richness and complexity concurrently, the correlations disappeared for bacteria but remained robust for fungi. This persistence reveals the critical role of the fungal community resilience in sustaining soil multifunctionality, particularly through their stable interactions with powerful core taxa. Our findings highlight the importance of fungal succession in enhancing soil multifunctionality during vegetation restoration in metallic tailing reservoirs, and manipulating fungal community may expedite ecological recovery of areas polluted with heavy metals.
Collapse
Affiliation(s)
- Jiyuan Jin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Dongyan Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jipeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuhan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| |
Collapse
|
2
|
Long Z, Wu Y, Zhu H, Bing H, Huang Y. Environmental protection measures mitigate Pb but not Cd accumulation in soils: Evidence from a 49-year soil chronosequence in an industrial and mining city in Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135441. [PMID: 39116742 DOI: 10.1016/j.jhazmat.2024.135441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
To address severe soil Pb and Cd contamination from anthropogenic activities, governments have implemented various environmental management measures. However, the extent to which these measures have constrained Pb and Cd accumulation in industrial and mining city soils remains unclear. Here, we investigated Pb and Cd accumulation patterns in soils of Panzhihua City, Southwest China, and determined their dominant anthropogenic drivers using Pb and Cd isotopes. Pb accumulation initially slowed and then increased, while Cd showed a continuous acceleration. Traffic and coal-burning power generation were the dominant anthropogenic forcings for Pb and Cd accumulation in the soils, respectively. Environmental protection measures, particularly the ban on leaded gasoline, significantly reduced Pb accumulation by decreasing traffic-related Pb contributions to soils from 1980 to 2008. However, environmental management measures could not practically mitigate Cd accumulation in the soils owing to the high Cd content in consumed coal, poor efficiency of air pollutant control measures, and steep rise in coal-burning power generation. This study thus indicates the criticality of controlling Cd emissions from thermal power generation. Additionally, the challenges faced by small industrial and mining cities during economic transformation and environmental policy implementation warrant more attention.
Collapse
Affiliation(s)
- Zhijie Long
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Yi Huang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Geosciences, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
3
|
Zhou D, Li C, Huang M, Chen X, Xia Y, Huang Y. The metal release and transformation mechanisms of V-Ti magnetite tailings: Role of the alternate flooding and drying cycles and organic acids. CHEMOSPHERE 2024; 362:142709. [PMID: 38936491 DOI: 10.1016/j.chemosphere.2024.142709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
V-Ti magnetite tailings (VTMTs) contain various heavy metals, such as Fe, Mn, V, Co, and Ni. The groundwater pollution caused by the tailing metal release has become a local environmental concern. Although studies have demonstrated the influence of alternate flooding and drying cycles (FDCs) on metal form and mobility in minerals, little was known about whether FDCs affect the metal release of VTMTs and the transformation of released metals. This study investigated the metal release kinetics of VTMTs and the metal transformation under FDCs in the absence and presence of acid rain (sulfuric and nitric acids) and bio-secreted organic acids (acetic, oxalic, and citric acids). The results showed that FDCs promoted metal release whether or not acids were present. The maximum released concentrations of V, Mn, Fe, Co, and Ni were as high as 78.63 mg L-1,1.47 mg L-1, 67.96 μg L-1, 1.34 mg L-1, and 0.80 mg L-1, respectively, under FDCs and citric acids. FDCs enhanced the tailing metal release by increasing the metal labile fraction proportion. However, the concentrations of released Fe, Mn, V, Co, and Ni all gradually decreased due to their (co-)precipitation. These precipitates conversely inhibited the subsequent mineral dissolution by covering the tailing surface. FDCs also enhanced the tailings' porosities by 2.94%-9.94%. The mineral dissolution, expansion and shrinkage, and changes in tension destroyed the tailing microstructure during FDCs. This study demonstrated the low metal pollution risk of VTMTs under FDCs, either in acid rain or bio-secreted organic acids. However, the increase in tailing porosity should be seriously considered as it would affect the tailing pond safety.
Collapse
Affiliation(s)
- Dan Zhou
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Mingzheng Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiaoyan Chen
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yonglian Xia
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yi Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
4
|
Zhang H, Wang S, Liu Z, Li Y, Wang Q, Zhang X, Li M, Zhang B. Community assembly and microbial interactions in an alkaline vanadium tailing pond. ENVIRONMENTAL RESEARCH 2024; 246:118104. [PMID: 38181847 DOI: 10.1016/j.envres.2024.118104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Intensive development of vanadium-titanium mines leads to an increasing discharge of vanadium (V) into the environment, imposing potential risks to both environmental system and public health. Microorganisms play a key role in the biogeochemical cycling of V, influencing its transformation and distribution. In addition, the characterization of microbial community patterns serves to assess potential threats imposed by elevated V exposure. However, the impact of V on microbial community remains largely unknown in alkaline V tailing areas with a substantial amounts of V accumulation and nutrient-poor conditions. This study aims to explore the characteristics of microbial community in a wet tailing pond nearby a large-scale V mine. The results reveal V contamination in both water (0.60 mg/L) and sediment tailings (340 mg/kg) in the tailing pond. Microbial community diversity shows distinctive pattern between environmental metrices. Genera with the functional potential of metal reduction\resistance, nitrogen metabolism, and carbon fixation have been identified. In this alkaline V tailing pond, V and pH are major drivers to induce community variation, particularly for functional bacteria. Stochastic processes primarily govern the assemblies of microbial community in the water samples, while deterministic process regulate the community assemblies of sediment tailings. Moreover, the co-occurrence network pattern unveils strong selective pattern for sediment tailings communities, where genera form a complex network structure exhibiting strong competition for limited resource. These findings reveal the patterns of microbial adaptions in wet vanadium tailing ponds, providing insightful guidelines to mitigate the negative impact of V tailing and develop sustainable management for mine-waste reservoir.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, 617000, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Song Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China.
| | - Ziqi Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Yinong Li
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100035, China.
| | - Qianwen Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Xiaolong Zhang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, 617000, China
| | - Ming Li
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, 617000, China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Long Z, Zhu H, Bing H, Ma Z, Yu D, Zhang W, Wu Y. Bio-accessibility and mobilization dynamics of soil vanadium during a 48-year vegetation restoration in a vanadium titano-magnetite tailings reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167507. [PMID: 37788780 DOI: 10.1016/j.scitotenv.2023.167507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Bio-accessibility of vanadium (V) in soils determines the effectiveness of vegetation restoration in the vanadium titano-magnetite tailings reservoirs because of persistent V toxicity, yet the variations in the bio-accessibility and mobilization of V in the soils with vegetation restoration remain elusive. Here, the bio-accessibility and mobilization of V in the soil-water interface were investigated along a 48-year vegetation restoration chronosequence in the Majiatian tailings reservoir using the diffusive gradients in thin films technique (DGT) and DGT-induced flux model. We found a low concentration of DGT-extracted V along the vegetation restoration chronosequence and the V fraction was dominated by the residual form, indicating a low V bio-accessibility in the soils. The bio-accessibility of V increased along the chronosequence because of the increased V resupply from solid phase, especially from the organic V fraction and the clay bound V. Low supply coefficient (R = 0.25) revealed a limited release of V from solid phase to soil solution. The kinetic resupply processes of V and its key regulating parameters were stage-specific during the vegetation restoration. The pool size of labile V in the soils determined the rapid V supply at the early and late stages, while the low desorption rate of V from the solid to liquid phase regulated the slow supply regime at the middle stage. The results of the present study highlight the importance of the long-term monitoring of soil V mobilization in the tailings reservoir because of the increased bio-accessibility and the dynamic supply of V during the vegetation restoration.
Collapse
Affiliation(s)
- Zhijie Long
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - Zhongjian Ma
- Panzhihua Iron and Steel Group Co., Ltd., Panzhihua 617000, China
| | - Daming Yu
- Panzhihua Iron and Steel Group Co., Ltd., Panzhihua 617000, China
| | - Wenwen Zhang
- Nanjing Junlinghb Co., Ltd., Nanjing 211500, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| |
Collapse
|
6
|
Gan CD, Yang JY, Du XY, Li JL, Tang QX, Nikitin A. Vanadium mobilization and redistribution during mineral transformation of vanadium-titanium magnetite tailings with different weathering degrees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165068. [PMID: 37355119 DOI: 10.1016/j.scitotenv.2023.165068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Due to the long-term open stockpile, the release of vanadium (V) from V-containing tailings will cause continuous V pollution in the mining area. Previous studies on the concentration and speciation of V primarily focused on surface tailings at a regional scale. However, the mobilization and redistribution of V within the tailing profile during the mineral transformation of tailings remain unclear. Herein, a series of concentrations of V(V) (0-200 mg L-1) solutions were added to the vanadium‑titanium magnetite tailings at different depths separately to simulate the redistribution of dissolved V released from tailings in the solid phase of tailings. During the 56-day incubation, the concentrations of aqueous V in the surface tailings were significantly lower than those in the deep tailings under the same level of V(V) treatment, indicating that the shallow tailings had a stronger immobilization capacity for V than the deep tailings. Morphological analysis and color overlays of the elements demonstrated that most of V was immobilized into the tailings and adsorbed or precipitated by the Fe (hydr)oxides in the tailings in 200 mg L-1 V(V) treatment. This portion of V mainly occurred in acid-soluble and reducible fractions in the tailings after a 7-day incubation, accounting for >71.7 % of the total V. However, these two factions of V with high bioavailability were gradually mineralized over time and transferred to residual V, which is difficult to move and has low bioavailability. Mineral phase analysis revealed that additional V(V) favored the formation of melanovanadite (Ca2V8O20·10H2O) and chromium vanadium oxide (Cr2V4O13) in the tailings. This study reveals that the dissolved V influenced the fractionation and redistribution of solid-phase V during tailing weathering, improving the understanding of the geochemical processes of V in tailing profiles and providing important guidance for the management of V-containing tailings.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| | - Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Jia-Li Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Aleksander Nikitin
- Institute of Radiobiology of the National Academy of Sciences of Belarus, Fedjuninskogo str., 4, 246007 Gomel, Belarus
| |
Collapse
|
7
|
Tang QX, Gan CD, Yang JY, Huang Y. Dynamics of vanadium and response of inherent bacterial communities in vanadium-titanium magnetite tailings to beneficiation agents, temperature, and illumination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121743. [PMID: 37149251 DOI: 10.1016/j.envpol.2023.121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Vanadium-titanium (V-Ti) magnetite tailings contain toxic metals that could potentially pollute the surrounding environment. However, the impact of beneficiation agents, an integral part of mining activities, on the dynamics of V and the microbial community composition in tailings remains unclear. To fill this knowledge gap, we compared the physicochemical properties and microbial community structure of V-Ti magnetite tailings under different environmental conditions, including illumination, temperature, and residual beneficiation agents (salicylhydroxamic acid, sodium isobutyl xanthate, and benzyl arsonic acid) during a 28-day reaction. The results revealed that beneficiation agents exacerbated the acidification of the tailings and the release of V, among which benzyl arsonic acid had the greatest impact. The concentration of soluble V in the leachate of tailings with benzyl arsonic acid was 6.4 times higher than that with deionized water. Moreover, illumination, high temperatures, and beneficiation agents contributed to the reduction of V in V-containing tailings. High-throughput sequencing revealed that Thiobacillus and Limnohabitans adapted to the tailings environment. Proteobacteria was the most diverse phylum, and the relative abundance was 85.0%-99.1%. Desulfovibrio, Thiobacillus, and Limnohabitans survived in the V-Ti magnetite tailings with residual beneficiation agents. These microorganisms could contribute to the development of bioremediation technologies. The main factors affecting the diversity and composition of bacteria in the tailings were Fe, Mn, V, SO42-, total nitrogen, and pH of the tailings. Illumination inhibited microbial community abundance, while the high temperature (39.5 °C) stimulated microbial community abundance. Overall, this study strengthens the understanding of the geochemical cycling of V in tailings influenced by residual beneficiation agents and the application of inherent microbial techniques in the remediation of tailing-affected environments.
Collapse
Affiliation(s)
- Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, 617000, Sichuan, China.
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| |
Collapse
|
8
|
Long Z, Bing H, Zhu H, Wu Y. Soil covering measure mitigates vanadium loss during short-term simulated rainfall in the vanadium titano-magnetite tailings reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117201. [PMID: 36603266 DOI: 10.1016/j.jenvman.2022.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Soil covering is an operative measure to decline pollutant release in tailings reservoirs and promote vegetation restoration, yet urgent research still needs to probe into pollutant leaching and migration in the artifact technology under extreme precipitation. Here, a soil column leaching experiment was designed to explore the migration and behaviors of vanadium (V) in the system of vanadium titano-magnetite tailings (VTMTs) covered by soils with different depths (5 cm, 10 cm, and 15 cm). Chemical fractions of V in the VTMTs and covered soils were analyzed to decipher the mechanisms underlying the V migration. We found a limited V leaching (0.26-0.52 μg/L, <0.01% of total V) in the columns during the experiments, and V in the VTMTs was not apt to be leached or migrate upward to the overlying soils. The soil volumes overlaid had nonsignificant effect on the V behaviors in the VTMTs (P > 0.05), because of the dominant and stable residual V (96.4% of total V) in the tailings. Although acid soluble V might be transformed to oxidizable V, it was resupplied by the fractions of weak-bound V in the solid phases during the leaching experiments. The mineral metal (hydr)oxides (e.g., aluminum, iron) determined the V behaviors in the VTMTs via absorption effect, and the high affinity of V to organic matters probably prevented its migration throughout the overlying soils. The results indicate that soil covering measure in the VTMTs reservoirs effectively reduces V migration or release from the tailings through leaching or upward migration, which provides a significant guidance for vegetation restoration in V-rich tailings reservoirs.
Collapse
Affiliation(s)
- Zhijie Long
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China.
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - He Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
9
|
Gan CD, Yang JY, Liu R, Li XY, Tang QX. Contrasted speciation distribution of toxic metal(loid)s and microbial community structure in vanadium-titanium magnetite tailings under dry and wet disposal methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129624. [PMID: 35870207 DOI: 10.1016/j.jhazmat.2022.129624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Tailing disposal technologies such as dry and wet disposal methods have a profound effect on the ecosystem of mining areas. However, the chemical speciation of metal(loid)s and microbial community structure in tailings under different disposal methods are still poorly understood. Here we compared the bioavailable fraction of metal(loid)s and the microbial community in vanadium-titanium (V-Ti) magnetite tailing profiles derived from dry and wet stockpiled methods. In wet tailings, the bioavailability of Cr, Cu, Mn, Ni, V, and Zn was higher than that in dry tailings as identified by BCR sequential extraction. Especially for Cu and Ni, the oxidizable fraction was the predominant fraction except the residual fraction, accounting for 37.2-59.0% and 23.2-36.6% of the total concentration in wet tailings, respectively. Based on 16 S rRNA high-throughput sequencing, totally 12 indicator bacterial taxa were detected in dry tailings against 68 in wet tailings. As the biomarkers in wet tailings, genera Sulfuricurvum, Geobacter, and Pseudomonas were expected to be applied to the transformation of metal(loid)s in the tailings. Our results emphasize the importance of dehydration treatment of tailings before stockpiling to minimize the environmental risks caused by toxic metal(loid)s, and provide insights into the engineering application of microbial technologies in V-Ti magnetite tailing area.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| | - Rui Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Xiao-Yu Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Gan CD, Cui SF, Wu ZZ, Yang JY. Multiple heavy metal distribution and microbial community characteristics of vanadium-titanium magnetite tailing profiles under different management modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128032. [PMID: 35077965 DOI: 10.1016/j.jhazmat.2021.128032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Vanadium-titanium (V-Ti) magnetite tailings have caused great concern due to their safety hazards and environmental risks. However, the microbial community structure and the key geochemical factors of V-Ti magnetite tailing profiles under different management modes remain unclear. Therefore, we investigated the heavy metal distribution and the microbial community structure of the soils and tailings at varied depths of V-Ti magnetite tailing profiles with and without soil coverage. The results indicated that the topsoil covering measures retarded the acidification of tailings during stockpiling. However, As, Mn, and V in tailings have the ability to migrate to the overlying soil. Based on 16S rRNA gene amplicon sequencing, Proteobacteria was the dominant genus in the topsoil-covered tailings, whereas the most abundant genus in the exposed tailings was Betaproteobacteria. Furthermore, Rhodobacter, Hydrogenophaga, Novosphingobium, and Geobacter enriched in tailings may potentially contribute to V(V) biotransformation and the development of mine bioreremediation technologies. RDA and Spearman correlation analysis showed that pH, EC, Cd, Mn, Pb, and V were the main influencing factors regulating microbial community composition. Overall, this study provides insights for evaluating the soil covering management mode and the engineering applications of microbial technologies to manage V-Ti magnetite tailings.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Si-Fan Cui
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhen-Zhong Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| |
Collapse
|
11
|
Long Z, Zhu H, Bing H, Tian X, Wang X, Ma Z, Yu D, Wu Y. Predicting soil cadmium uptake by plants in a tailings reservoir during 48-year vegetation restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151802. [PMID: 34808150 DOI: 10.1016/j.scitotenv.2021.151802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Plant uptake can reduce soil cadmium (Cd) pollution, while how to exactly predict plant Cd uptake in industrial or mining areas during vegetation restoration remains unexplored. Taking Heteropogon contortus as the object plant, we predicted plant Cd uptake in the Majiatian tailings reservoir during 48-year vegetation restoration by the methods of soil total Cd, DGT (diffusive gradients in thin films technique) and acetic acid (HAc) extraction. Meanwhile, we explored the effects of soil properties on the accuracy of the prediction. Total Cd concentrations in the soils exhibited a better prediction of plant Cd uptake relative to the methods of HAc extraction and DGT. However, the DGT method effectively predicted plant Cd uptake at low Cd supply (lower than 0.42 μg/L), probably because of the dominant diffusion limitation by plants. The prediction of plant Cd uptake by HAc extraction was improved when combined with soil pH. Our results indicate that with increasing external Cd inputs during the vegetation restoration, soil total Cd and traditional extraction method in combination with soil properties are effective ways to predict plant Cd uptake, especially when the Cd fractions cannot be measured by DGT. However, the DGT method works once plant Cd uptake dominated by diffusion limitation despite the interference in soil properties.
Collapse
Affiliation(s)
- Zhijie Long
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xin Tian
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Wang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongjian Ma
- Panzhihua Steel Group Mining Co., Ltd., Panzhihua 617000, China
| | - Daming Yu
- Panzhihua Steel Group Mining Co., Ltd., Panzhihua 617000, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|