1
|
Korcelski C, Neckel A, Bodah BW, Mores G, Santosh M, Moro LD, Oliveira MLS, Schmitz GP, Pascoal C. Terrestrial nanoparticles and geospatial optics: Implications for environmental impact from anthropogenic contaminants in the Caribbean region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178503. [PMID: 39827640 DOI: 10.1016/j.scitotenv.2025.178503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Atmospheric contaminants from natural processes and anthropogenic activities pose a major problem to the environment. Here we analyze the dynamics of atmospheric and terrestrial contaminant concentrations in sediments containing chemical elements, such as nanoparticles (NPs) and ultrafine particles in hydrological sources of the Caribbean region of Colombia. Terrestrial sediments were collected from 2022 to 2024, and quantified for major chemical elements in the form of NPs and ultrafine particles in runoff receiving areas along the banks of Colombia's Ciénaga Grande in Santa Marta Bay, on the Isla de Salamanca. Additionally, atmospheric carbon monoxide (CO) and nitrogen dioxide (NO2) levels were detected using TROPOMI, coupled with the Sentinel-5P satellite, from 2019 to 2024. Sampling was performed during both summer and winter, focusing on the Sierra Nevada de Santa Marta National Park, Isla de Salamanca, and the cities of Santa Marta and Barranquilla. Sediment samples were collected from 25 fixed sites on Isla de Salamanca and analyzed in the laboratory. The CO and NO2 concentrations were detected at 122 "collection points," with a spatial resolution of 7 km × 3.5 km, an average normalization of 0.83 μg/mg, and a maximum error of 6.62 %. The results revealed abundant Fe particles containing Cr, Ti, Zn, and Zr (1-2.5 μm in size), with nanohematite (iron oxide) particles containing C, As, and S detected via EDS. The CO concentrations peaked in Barranquilla and Santa Marta (up to 0.042 mol/m2), while NO2 concentrations reached 2.4 × 10-5 mol/m2, similar to the levels in Sierra Nevada de Santa Marta National Park and Ciénaga Grande de Santa Marta. These findings highlight the impact of forest fires on air quality in the region and support the development of new public policies to mitigate pollution and to protect ecosystems in this ecologically relevant area.
Collapse
Affiliation(s)
- Cleiton Korcelski
- Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Alcindo Neckel
- Department of Engineering, University of Minho, 4800-058 Guimarães, Portugal; ATTITUS Education, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Brian William Bodah
- Thaines and Bodah Center for Education and Development, 203 Merinda Drive, Selah, WA 98942, USA; Workforce Education & Applied Baccalaureate Programs, Yakima Valley College, South 16th Avenue & Nob Hill Boulevard, Yakima, WA 98902, USA
| | - Giana Mores
- ATTITUS Education, 304, Passo Fundo, RS, 99070-220, Brazil
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geosciences Beijing, Beijing 100083, China; Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
| | - Leila Dal Moro
- ATTITUS Education, 304, Passo Fundo, RS, 99070-220, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental Engineering, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia; Santa Catarina State Research and Innovation Support Foundation (Fapesc), Florianópolis, Santa Catarina 88030-902, Brazil
| | | | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Gupta G, Sailwal M, Shukla P. Sustainable Nanotechnology Based Techniques for Mitigating the Pollutants from Pulp and Paper Industry. ACS OMEGA 2024; 9:47904-47919. [PMID: 39676985 PMCID: PMC11635472 DOI: 10.1021/acsomega.4c06022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Paper mills inevitably produce various pollutants, including chlorolignin, chlorophenols, chloroguaiacol, furan, cyanide, and heavy metals. These pollutants cause significant threats to aquatic and terrestrial life. The pulp and paper industries are looking for eco-friendly solutions for the disposal of effluents during paper processing. Moreover, environmental management practices are a key concern that may be addressed by removing these effluents using suitable bioremediation techniques. Therefore, we have discussed several eco-friendly nanotechnology based sustainable bioremediation technologies like the use of nanoparticles, nanomaterials, nanocomposites, nanoadsorbents, and several advanced methods such as electrocoagulation and photocatalysis, which may be utilized for the elimination of hazardous pollutants from paper industry effluents. This review finally includes critical insight into the potential use of the above-mentioned nanotechnology based interventions for mitigation of contaminants from the paper industry. Nevertheless, there are a few limitations and challenges toward implementation of such technologies, which are also discussed in this review.
Collapse
Affiliation(s)
- Guddu
Kumar Gupta
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Megha Sailwal
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Sharma A, Mona S, Sharma P. Nanomaterials for sustainable remediation: efficient removal of Rhodamine B and lead using greenly synthesized novel mesoporous ZnO@CTAB nanocomposite. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:491. [PMID: 38691183 DOI: 10.1007/s10661-024-12655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Sharma Mona
- Department of Environmental Studies, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Praveen Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
4
|
Bordin ER, Ramsdorf WA, Lotti Domingos LM, de Souza Miranda LP, Mattoso Filho NP, Cestari MM. Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119396. [PMID: 37890295 DOI: 10.1016/j.jenvman.2023.119396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The rapid advancement of nanotechnology has contributed to the development of several products that are being released to the consumer market without careful analysis of their potential impact on the environment. Zinc oxide nanoparticles (ZnO-NPs) are used in several fields and are applied in consumer products, technological innovations, and biomedicine. In this sense, this study aims to compile existing knowledge regarding the effects of ZnO-NPs on non-target organisms, with the goal of ensuring the safety of human health and the environment. To achieve this objective, a systematic review of the available data on the toxicity of these nanomaterials to freshwater and marine/estuarine aquatic organisms was carried out. The findings indicate that freshwater invertebrates are the most commonly used organisms in ecotoxicological tests. The environmental sensitivity of the studied species was categorized as follows: invertebrates > bacteria > algae > vertebrates. Among the most sensitive species at each trophic level in freshwater and marine/estuarine environments are Daphnia magna and Paracentrotus lividus; Escherichia coli and Vibrio fischeri; Scenedesmus obliquus and Isochrysis galbana; and Danio rerio and Rutilus caspicus. The primary mechanisms responsible for the toxicity of ZnO-NPs involve the release of Zn2+ ions and the generation of reactive oxygen species (ROS). Thus, the biosynthesis of ZnO-NPs has been presented as a less toxic form of production, although it requires further investigation. Therefore, the synthesis of the information presented in this review can help to decide which organisms and which exposure concentrations are suitable for estimating the toxicity of nanomaterials in aquatic ecosystems. It is expected that this information will serve as a foundation for future research aimed at reducing the reliance on animals in ecotoxicological testing, aligning with the goal of promoting the sustainable advancement of nanotechnology.
Collapse
Affiliation(s)
| | - Wanessa Algarte Ramsdorf
- Department of Chemistry and Biology, Federal University of Technology (UTFPR), Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|
5
|
Putri FK, Hidayah E, Ma'ruf MF. Enhancing stormwater management with low impact development (LID): a review of the rain barrel, bioretention, and permeable pavement applicability in Indonesia. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2345-2361. [PMID: 37186635 PMCID: wst_2023_095 DOI: 10.2166/wst.2023.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Low impact development (LID) is a sustainable land use and planning strategy that aims to minimize the environmental impacts of development. A community can enhance their water resources and create sustainable and resilient neighbourhoods. This approach has demonstrated success in managing stormwater and promoting water reuse globally, however, its suitability in developing countries like Indonesia remains uncertain and requires further investigation. The implementation of LID in developing countries may face several challenges including high density and complex drainage networks, combined sewer usage, clay soil type, irregular housing layouts, community socio-economic characteristics, affordability, cost, and the availability of regulations and policies. With proper planning and site-specific strategies, LID can be implemented effectively in Indonesia. Clear regulations, secured funding source and community-based LID are all essential for successful LID deployment. This paper can be used as a starting point for considering LID implementation in Indonesia and other countries with similar characteristics.
Collapse
Affiliation(s)
- Fidyasari Kusuma Putri
- Department of Civil Engineering, Jember University, Jl. Kalimantan Tegalboto No.37, Jember, Jawa Timur 68121, Indonesia E-mail:
| | - Entin Hidayah
- Department of Civil Engineering, Jember University, Jl. Kalimantan Tegalboto No.37, Jember, Jawa Timur 68121, Indonesia E-mail:
| | - Mokhammad Farid Ma'ruf
- Department of Civil Engineering, Jember University, Jl. Kalimantan Tegalboto No.37, Jember, Jawa Timur 68121, Indonesia E-mail:
| |
Collapse
|
6
|
Gong Y, Li X, Xie P, Fu H, Nie L, Li J, Li Y. The migration and accumulation of typical pollutants in the growing media layer of bioretention facilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44591-44606. [PMID: 36694065 PMCID: PMC9873394 DOI: 10.1007/s11356-023-25305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
A series of complex physical and chemical processes, such as interception, migration, accumulation, and transformation, can occur when pollutants in stormwater runoff enter the growing media layer of bioretention facilities, affecting the purification of stormwater runoff by bioretention facilities. The migration and accumulation of pollutants in the growing media layer need long-term monitoring in traditional experimental studies. In this study, we established the Hydrus-1D model of water and solution transport for the bioretention facilities. By analyzing the variation of cumulative fluxes of NO3--N and Pb with time and depth, we investigated pollutant migration and accumulation trends in the growing media layer of bioretention facilities. It can provide support for reducing runoff pollutants in bioretention facilities. The Hydrus-1D model was calibrated and verified with experimental data, and the input data (runoff pollutant concentration) for the pollutant concentration boundary was obtained from the SWMM model. The results demonstrated that the cumulative fluxes of NO3--N and Pb increased with the passage of simulation time and depth of the growing media layer overall. From the top to the bottom of the growing media layer, the change rates of the peak cumulative fluxes of NO3--N and Pb were strongly linked with their levels in the runoff. An increase in rainfall decreased the content of NO3--N and Pb in the growing media layer, and this phenomenon was more obvious in the lower part of the layer.
Collapse
Affiliation(s)
- Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xia Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Xie
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hongyan Fu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Qingdao Planning Engineering Design Research Institute Co., Ltd., Qingdao, 266000, China
| | - Linmei Nie
- Centre for Sustainable Development and Innovation of Water Technology, 0957, Oslo, Norway
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yanhong Li
- Beijing Guohuan Tsinghua Environmental Engineering Design & Research Institute Co., Ltd., Beijing, 100084, China
| |
Collapse
|
7
|
Li M, Luo J, Lu J, Shang W, Mu J, Sun F, Dong Z, Li X. A novel nanofibrous PAN ultrafiltration membrane embedded with ZIF-8 nanoparticles for effective removal of Congo red, Pb(II), and Cu(II) in industrial wastewater treatment. CHEMOSPHERE 2022; 304:135285. [PMID: 35714956 DOI: 10.1016/j.chemosphere.2022.135285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
A novel Polyacrylonitrile (PAN) composite membrane involving ZIF-8 nanoparticles, named as ZIF-8/PAN membrane, was obtained via electrospinning to remove the Congo red (CR), Pb(II) and Cu(II) ions in industrial wastewaters, during which the adsorption mechanisms were examined in this study. The adsorption efficiency of the electrospun ZIF-8/PAN membrane was as high as 89%, 92% and 76% for CR, Pb(II) and Cu(II), respectively. Comparative analysis showed that ZIF-8 nanoparticles embedded in the ZIF-8/PAN membrane accounted for these enhanced adsorption capabilities. The adsorption behaviors of the ZIF-8 nanoparticles were investigated through experiments and theoretical analysis, and the results unraveled that the adsorption for CR by the ZIF-8 was mainly including electrostatic interaction, hydrogen bonding and π-π interaction, while those for Pb(II) and Cu(II) were mainly caused by ion-exchange and chemical adsorption. Parametric studies were conducted to optimize the conditions for removing CR, Pb(II), and Cu(II) by ZIF-8 nanoparticles, during which all of pollutants showed different reactions to the solution pH. This work not only develops a novel ZIF-8/PAN composite membrane for effective removals of pollutants, but also reveals the underlying mechanisms of pollutants adsorption in terms of molecular interactions, providing important understandings on fibrous materials design for efficient heavy metals and dyes removals in industrial wastewater treatment.
Collapse
Affiliation(s)
- Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Jingwen Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jianjiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wentao Shang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiale Mu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zijun Dong
- School of Civil and Traffic Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaoyan Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
8
|
Sarma H, Narayan M, Peralta-Videa JR, Lam SS. Exploring the significance of nanomaterials and organic amendments - Prospect for phytoremediation of contaminated agroecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119601. [PMID: 35709913 DOI: 10.1016/j.envpol.2022.119601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 05/22/2023]
Abstract
Emerging micro-pollutants have rapidly contaminated the agro-ecosystem, posing serious challenges to a sustainable future. The vast majority of them have infiltrated the soil and damaged agricultural fields and crops after being released from industry. These pollutants and their transformed products are also transported in vast quantities which further exacerbate the damage. Sustainable remediation techniques are warranted for such large amounts of contaminants. As aforementioned, many of them have been detected at very high concentrations in soil and water which adversely affect crop physiology by disrupting different metabolic processes. To combat this situation, nanomaterials and other organic amendments assisted phytoremediation ware considered as a viable alternative. It is a potent synergistic activity between the biological system and the supplied organic or nanomaterial material to eliminate emerging contaminants and micropollutants from crop fields. This can be effectively be applied to degraded crop fields and could potentially embody a green technology for sustainable agriculture.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar(BTR), Assam, 783370, India; Institutional Biotech Hub, Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
9
|
A Literature Review of Wetland Treatment Systems Used to Treat Runoff Mixtures Containing Antibiotics and Pesticides from Urban and Agricultural Landscapes. WATER 2021. [DOI: 10.3390/w13243631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wetland treatment systems are used extensively across the world to mitigate surface runoff. While wetland treatment for nitrogen mitigation has been comprehensively reviewed, the implications of common-use pesticides and antibiotics on nitrogen reduction remain relatively unreviewed. Therefore, this review seeks to comprehensively assess the removal of commonly used pesticides and antibiotics and their implications for nitrogen removal in wetland treatment systems receiving non-point source runoff from urban and agricultural landscapes. A total of 181 primary studies were identified spanning 37 countries. Most of the reviewed publications studied pesticides (n = 153) entering wetlands systems, while antibiotics (n = 29) had fewer publications. Even fewer publications reviewed the impact of influent mixtures on nitrogen removal processes in wetlands (n = 16). Removal efficiencies for antibiotics (35–100%), pesticides (−619–100%), and nitrate-nitrogen (−113–100%) varied widely across the studies, with pesticides and antibiotics impacting microbial communities, the presence and type of vegetation, timing, and hydrology in wetland ecosystems. However, implications for the nitrogen cycle were dependent on the specific emerging contaminant present. A significant knowledge gap remains in how wetland treatment systems are used to treat non-point source mixtures that contain nutrients, pesticides, and antibiotics, resulting in an unknown regarding nitrogen removal efficiency as runoff contaminant mixtures evolve.
Collapse
|