1
|
Choudhary S, Tiwari M, Poluri KM. A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima. Cells 2024; 13:2047. [PMID: 39768139 PMCID: PMC11674128 DOI: 10.3390/cells13242047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels. This integrated approach provides an ambitious strategy to address global concerns pertaining to economic stability, environmental degradation, and the energy crisis. This study investigates the intricate defense mechanisms deployed by freshwater microalgae Chlorella minutissima in response to Cr (III) toxicity. The microalga achieved an impressive 92% removal efficiency with an IC50 value of 200 ppm, illustrating its extraordinary resilience towards chromium-induced stress. Furthermore, this research embarked on thorough explorations encompassing morphological, pigment-centric, and biochemical analyses, aimed at revealing the adaptive strategies associated with Cr (III) resilience, as well as the dynamics of carbon pool flow that contribute to enhanced lipid and extracellular polysaccharide (EPS) synthesis. The FAME profile of the biodiesel produced complies with the benchmark established by American and European fuel regulations, emphasizing its suitability as a high-quality vehicular fuel. Elevated levels of ROS, TBARS, and osmolytes (such as glycine-betaine), along with the increased activity of antioxidant enzymes (CAT, GR, and SOD), reveal the activation of robust defense mechanisms against oxidative stress caused by Cr (III). The finding of this investigation presents an effective framework for an algal-based biorefinery approach, integrating pollutant detoxification with the generation of vehicular-quality biodiesel and additional value-added compounds vital for achieving sustainability under the concept of a circular economy.
Collapse
Affiliation(s)
- Sonia Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
- Centre for Transportation System, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mansi Tiwari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
| |
Collapse
|
2
|
Elleuch J, Thabet J, Ghribi I, Jabeur H, Hernández LE, Fendri I, Abdelkafi S. Responses of Dunaliella sp. AL-1 to chromium and copper: Biochemical and physiological studies. CHEMOSPHERE 2024; 364:143133. [PMID: 39168386 DOI: 10.1016/j.chemosphere.2024.143133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Microalgae have gained recognition as versatile candidates for the remediation of heavy metals (HMs). This study investigated the biosorption potential of Dunaliella sp. AL1 for copper (Cu(II)) and hexavalent chromium (Cr(VI)) in aqueous solutions. The marine microalga Dunaliella sp. AL1 was exposed to half-sublethal concentrations of both metals in single and bimetallic systems, and responses in algal growth, oxidative stress, photosynthetic pigment production, and photosynthetic performance were evaluated. Cu and/or Cr exposure increased the generation of reactive oxygen species (ROS) in microalgae cells but did not impact algal growth. In terms of photosynthesis, there was a decrease in chlorophylls and carotenoids production in the microalgae culture treated with Cr, either alone or in combination with Cu. The study recorded promising metal removal efficiencies: 26.67%-20.11% for Cu and 94.99%-95.51% for Cr, in single and bimetallic systems, respectively. FTIR analysis revealed an affinity of Cu and Cr ions towards aliphatic/aldehyde C-H, N-H bending, and phosphate groups, suggesting the formation of complex bonds. Biochemical analysis of microalgae biomass collected after the removal of Cr alone or in combination with Cu showed a significant decrease in total carbohydrate content and soluble protein levels. Meanwhile, higher lipid accumulation was recorded and evidenced by BODIPY 505/515 staining. Fatty acid composition analysis by GC revealed a modulation in lipid composition, with a decrease in the ratio of unsaturated fatty acids (UFA) to saturated fatty acids (SFA), in response to Cu, Cr, and Cu-Cr exposure, indicating the suitability of the biomass for sustainable biofuel production.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imtinen Ghribi
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.
| | | | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
3
|
Bedard S, Roxborough E, O'Neill E, Mangal V. The biomolecules of Euglena gracilis: Harnessing biology for natural solutions to future problems. Protist 2024; 175:126044. [PMID: 38823247 DOI: 10.1016/j.protis.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Over the past decade, the autotrophic and heterotrophic protist Euglena gracilis (E. gracilis) has gained popularity across the studies of environmental science, biosynthesis experiments, and nutritional substitutes. The unique physiology and versatile metabolism of E. gracilis have been a recent topic of interest to many researchers who continue to understand the complexity and possibilities of using E. gracilis biomolecule production. In this review, we present a comprehensive representation of recent literature outlining the various uses of biomolecules derived from E. gracilis across the fields of natural product biosynthesis, as a nutritional substitute, and as bioremediation tools. In addition, we highlight effective strategies for altering metabolite production using abiotic stressors and growth conditions. To better understand metabolite biosynthesis and its role in E. gracilis, integrated studies involving genomics, metabolomics, and proteomics should be considered. Together, we show how the ongoing advancements in E. gracilis related research continue to broaden applications in the biosynthetic sector and highlight future works that would strengthen our understanding of overall Euglena metabolism.
Collapse
Affiliation(s)
- S Bedard
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada
| | - E Roxborough
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - E O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - V Mangal
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada.
| |
Collapse
|
4
|
Barla RJ, Gupta S, Raghuvanshi S. Sustainable synergistic approach to chemolithotrophs-supported bioremediation of wastewater and flue gas. Sci Rep 2024; 14:16529. [PMID: 39019921 PMCID: PMC11254919 DOI: 10.1038/s41598-024-67053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Flue gas emissions are the waste gases produced during the combustion of fuel in industrial processes, which are released into the atmosphere. These identical processes also produce a significant amount of wastewater that is released into the environment. The current investigation aims to assess the viability of simultaneously mitigating flue gas emissions and remediating wastewater in a bubble column bioreactor utilizing bacterial consortia. A comparative study was done on different growth media prepared using wastewater. The highest biomass yield of 3.66 g L-1 was achieved with the highest removal efficiencies of 89.80, 77.30, and 80.77% for CO2, SO2, and NO, respectively. The study investigated pH, salinity, dissolved oxygen, and biochemical and chemical oxygen demand to assess their influence on the process. The nutrient balance validated the ability of bacteria to utilize compounds in flue gas and wastewater for biomass production. The Fourier Transform-Infrared Spectrometry (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses detected commercial-use long-chain hydrocarbons, fatty alcohols, carboxylic acids, and esters in the biomass samples. The nuclear magnetic resonance (NMR) metabolomics detected the potential mechanism pathways followed by the bacteria for mitigation. The techno-economic assessment determined a feasible total capital investment of 245.74$ to operate the reactor for 288 h. The bioreactor's practicability was determined by mass transfer and thermodynamics assessment. Therefore, this study introduces a novel approach that utilizes bacteria and a bioreactor to mitigate flue gas and remediate wastewater.
Collapse
Affiliation(s)
- Rachael J Barla
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Suresh Gupta
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Faculty Division-1, Department of Chemical Engineering, Birla Institute of Technology and Science (BITS PILANI), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
5
|
Xu P, Tu X, An Z, Mi W, Wan D, Bi Y, Song G. Cadmium-Induced Physiological Responses, Biosorption and Bioaccumulation in Scenedesmus obliquus. TOXICS 2024; 12:262. [PMID: 38668485 PMCID: PMC11054603 DOI: 10.3390/toxics12040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Cadmium ion (Cd2+) is a highly toxic metal in water, even at low concentrations. Microalgae are a promising material for heavy metal remediation. The present study investigated the effects of Cd2+ on growth, photosynthesis, antioxidant enzyme activities, cell morphology, and Cd2+ adsorption and accumulation capacity of the freshwater green alga Scenedesmus obliquus. Experiments were conducted by exposing S. obliquus to varying concentrations of Cd2+ for 96 h, assessing its tolerance and removal capacity towards Cd2+. The results showed that higher concentrations of Cd2+ (>0.5 mg L-1) reduced pigment content, inhibited algal growth and electron transfer in photosynthesis, and led to morphological changes such as mitochondrial disappearance and chloroplast deformation. In this process, S. obliquus counteracted Cd2+ toxicity by enhancing antioxidant enzyme activities, accumulating starch and high-density granules, and secreting extracellular polymeric substances. When the initial Cd2+ concentration was less than or equal to 0.5 mg L-1, S. obliquus was able to efficiently remove over 95% of Cd2+ from the environment through biosorption and bioaccumulation. However, when the initial Cd2+ concentration exceeded 0.5 mg L-1, the removal efficiency decreased slightly to about 70%, with biosorption accounting for more than 60% of this process, emerging as the predominant mechanism for Cd2+ removal. Fourier transform infrared correlation spectroscopy analysis indicated that the carboxyl and amino groups of the cell wall were the key factors in removing Cd2+. In conclusion, S. obliquus has considerable potential for the remediation of aquatic environments with Cd2+, providing algal resources for developing new microalgae-based bioremediation techniques for heavy metals.
Collapse
Affiliation(s)
- Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Tu
- Geophysical Exploration Brigade of Hubei Geological Bureau, Wuhan 430056, China;
| | - Zhengda An
- College of Life Science, Wuhan University, Wuhan 430072, China;
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Dong Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| |
Collapse
|
6
|
Gu D, You J, Xiao Q, Yu X, Zhao Y. Comprehensive understanding of the regulatory mechanism by which selenium nanoparticles boost CO 2 fixation and cadmium tolerance in lipid-producing green algae under recycled medium. WATER RESEARCH 2023; 245:120556. [PMID: 37683524 DOI: 10.1016/j.watres.2023.120556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Recycled medium plus cadmium is a promising technique for reducing the cultivation cost and enhancing the yield of microalgae lipids. However, oxidative stress and cadmium toxicity significantly hinder the resulting photosynthetic efficiency, cell growth and cell activity. Herein, selenium nanoparticles (SeNPs) were used to increase the total biomass, biolipid productivity, and tolerance to cadmium. Wide-ranging analyses of photosynthesis, energy yield, fatty acid profiles, cellular ultrastructure, and oxidative stress biomarkers were conducted to examine the function of SeNPs in CO2 fixation and cadmium resistance in Ankistrodesmus sp. EHY. The application of 15 μM cadmium and 2 mg L-1 SeNPs further enhanced the algal biomass productivity and lipid productivity to 500.64 mg L-1 d-1 and 301.14 mg L-1 d-1, respectively. Moreover, the rates of CO2 fixation, chlorophyll synthesis and total nitrogen removal were similarly increased by the application of SeNPs. Exogenous SeNPs strengthened cell growth and cadmium tolerance by upregulating photosynthesis, the TCA cycle and the antioxidant system, reducing the uptake and translocation of cadmium, and decreasing the levels of reactive oxidative stress (ROS), extracellular polymeric substances (EPSs) and cellular Cd2+ level in EHY under recycled medium and cadmium stress conditions. Additionally, a maximum energy yield of 127.40 KJ L-1 and a lipid content of 60.15% were achieved in the presence of both SeNPs and cadmium stress. This study may inspire the efficient disposal of recycled medium and biolipid production while also filling the knowledge gaps regarding the mechanisms of SeNP functions in carbon fixation and cadmium tolerance in microalgae.
Collapse
Affiliation(s)
- Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, China
| | - Qiu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, China.
| |
Collapse
|
7
|
Thabet J, Elleuch J, Martínez F, Abdelkafi S, Hernández LE, Fendri I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. CHEMOSPHERE 2023; 338:139391. [PMID: 37414298 DOI: 10.1016/j.chemosphere.2023.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mercury (Hg) is a global pollutant that affects numerous marine aquatic ecosystems. We isolated Chlorococcum dorsiventrale Ch-UB5 microalga from coastal areas of Tunisia suffering from metal pollution and analyzed its tolerance to Hg. This strain accumulated substantial amounts of Hg and was able to remove up to 95% of added metal after 24 and 72 h in axenic cultures. Mercury led to lesser biomass growth, higher cell aggregation, significant inhibition of photochemical activity, and appearance of oxidative stress and altered redox enzymatic activities, with proliferation of starch granules and neutral lipids vesicles. Such changes matched the biomolecular profile observed using Fourier Transformed Infrared spectroscopy, with remarkable spectral changes corresponding to lipids, proteins and carbohydrates. C. dorsiventrale accumulated the chloroplastic heat shock protein HSP70B and the autophagy-related ATG8 protein, probably to counteract the toxic effects of Hg. However, long-term treatments (72 h) usually resulted in poorer physiological and metabolic responses, associated with acute stress. C. dorsiventrale has potential use for Hg phycoremediation in marine ecosystems, with the ability to accumulating energetic reserves that could be used for biofuel production, supporting the notion of using of C. dorsiventrale for sustainable green chemistry in parallel to metal removal.
Collapse
Affiliation(s)
- Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J. Drought-free future climate conditions enhance cadmium phytoremediation capacity by Brassica napus through improved physiological status. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131181. [PMID: 36948123 DOI: 10.1016/j.jhazmat.2023.131181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to assess Cd phytoextraction efficiency in well-watered and drought-stressed B. napus plants under current climate (CC, 21/14 °C, 400 ppm CO2) and future climate (FC, 25/18 °C, 800 ppm CO2) conditions. The underlying physiological mechanisms underpinning the obtained results were investigated by studying Cd (1, 10, 50, and 100 mg kg-1) effect on B. napus photosynthetic performance and nutritional status. Only the Cd-50 and Cd-100 treatments caused visible leaf lesions, growth retardation, reductions in both gas exchange and chlorophyll fluorescence-related parameters, and disturbed mineral nutrient balance. Under CC conditions, well-watered plants were affected more than under FC conditions. The most important pathway by which Cd affected B. napus photosynthetic efficiency in well-watered plants was the damage to both photosystems, lowering photosynthetic electron transport. Meanwhile, non-stomatal and stomatal limitations were responsible for the higher reduction in the photosynthetic rate (Pr) of drought-stressed compared to well-watered plants. The significantly higher shoot dry weight, which had a strong positive relationship with Pr, was the main factor determining significantly higher shoot Cd accumulation in high Cd treatments in well-watered plants under FC conditions, resulting in a 65% (p < 0.05) higher soil Cd removal rate in the Cd-50 treatment.
Collapse
Affiliation(s)
- Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania.
| | - Inesa Kniuipytė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto st. 10, LT-53361 Akademija, Kaunas distr., Lithuania
| |
Collapse
|
9
|
Singh S, Pal K. Folic-acid adorned alginate-polydopamine modified paclitaxel/Zn-CuO nanocomplex for pH triggered drug release and synergistic antitumor efficacy. Int J Biol Macromol 2023; 234:123602. [PMID: 36773860 DOI: 10.1016/j.ijbiomac.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Targeted chemotherapy is a prominent cancer treatment research trend that intends to boost the efficacy of drug delivery to cancer cells. The present work aimed to design, a folate-decorated biologically inspired alginate-polydopamine capped zinc doped copper oxide nanoparticles (Zn-CuO) loaded with paclitaxel (Zn-CuO@PTX/AlgPDA-FA) as a simple, efficient, and versatile nanoplatform. Interestingly, Zn species doped in CuO frameworks significantly improved paclitaxel (PTX) molecule loading efficiency without requiring any additional functionalization and fostered the increased antitumor efficacy by precisely delivering them in tumor's acidic microenvironment by obliterating the formed coordination connections between the host as well as guest species. According to DLS, average size of nanocomplex was 196 ± 5.01 nm with ȥ-potential -31.4 ± 1.54 mV. PTX encapsulation and loading efficiencies were 75.2 ± 1.54 % and 18.54 ± 2.31 %, respectively. Furthermore, nanocomplex demonstrates high stability and biocompatibility in vitro. Under an acidic environment (pH 5.0), there was greater PTX release compared to normal physiological conditions. Moreover, Zn-CuO@PTX/AlgPDA-FA NPs showed remarkable internalization efficiency in MCF-7 cells and demonstrated strong cytotoxicity with IC50 (150 ± 2.58 μg/mL) along with improved ROS generation and changed mitochondrial membrane potential level. Therefore, our approach could suggest excellent potential for tumor targeting in cancer therapy with reduced off-target toxicity, and desirable therapeutic effects.
Collapse
Affiliation(s)
- Swati Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India; Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
10
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
11
|
Aravind MK, Vignesh NS, Gayathri S, Anjitha N, Athira KM, Gunaseelan S, Arunkumar M, Sanjaykumar A, Karthikumar S, Ganesh Moorthy IM, Ashokkumar B, Pugazhendhi A, Varalakshmi P. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. CHEMOSPHERE 2023; 313:137310. [PMID: 36460155 DOI: 10.1016/j.chemosphere.2022.137310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Phycoremediation of heavy metals are gaining much attention and becoming an emerging practice for the metal removal in diverse environmental matrices. Still, the physicochemical state of metal polluted sites is often found to be complex and haphazard in nature due to the irregular discharge of wastes, that leads to the lack of conjecture on the application of microalgae for the metal bioremediation. Besides, the foresaid issues might be eventually ended up with futile effect to the polluted site. Therefore, this review is mainly focusing on interpretative assessment on pre-existing microalgal strategies and their merits and demerits for selected metal removal by microalgae through various process such as natural attenuation, nutritional amendment, chemical pretreatment, metal specific modification, immobilization and amalgamation, customization of genetic elements and integrative remediation approaches. Thus, this review provides the ideal knowledge for choosing an efficient metal remediation tactics based on the state of polluted environment. Also, this in-depth description would provide the speculative knowledge of counteractive action required for pass-over the barriers and obstacles during implementation. In addition, the most common metal removal mechanism of microalgae by adsorption was comparatively investigated with different metals through the principal component analysis by grouping various factor such as pH, temperature, initial metal concentration, adsorption capacity, removal efficiency, contact time in different microalgae. Conclusively, the suitable strategies for different heavy metals removal and addressing the complications along with their solution is comprehensively deliberated for metal removal mechanism in microalgae.
Collapse
Affiliation(s)
- Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nair Anjitha
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kottilinkal Manniath Athira
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India; International Centre for Genetic Engineering and Biotechnology (ICGEB), Transcription Regulation Group, New Delhi, 110067, India
| | - Ashokkumar Sanjaykumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Sankar Karthikumar
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar, 626001, Tamil Nadu, India
| | | | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
12
|
Gupta P, Gupta H, Kairamkonda M, Kumar N, Poluri KM. Elucidating the lactic acid tolerance mechanism in vaginal clinical isolates of Candida glabrata. Med Mycol 2022; 60:myac042. [PMID: 35679084 DOI: 10.1093/mmy/myac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Incidence of vulvovaginal candidiasis are strikingly high and treatment options are limited with nearly 50% Candida glabrata cases left untreated or experience treatment failures. The vaginal microenvironment is rich in lactic acid, and the adaptation of C. glabrata to lactic acid (LA) is the main reason for clinical treatment failure. In the present study, C. glabrata and its vaginal clinical isolates were comprehensively investigated for their growth response, metabolic adaptation and altered cellular pathway to LA using different biochemical techniques, metabolic profiling and transcriptional studies. C. glabrata shown considerable variations in its topological and biochemical features without compromising growth in LA media. Chemical profiling data highlighted involvement of cell wall/membrane, ergosterol and oxidative stress related pathways in mediating adaptative response of C. glabrata towards LA. Further, one dimensional proton (1H) NMR spectroscopy based metabolic profiling revealed significant modulation in 19 metabolites of C. glabrata cells upon growth in LA. Interestingly myo-inositol, xylose, putrescine and betaine which are key metabolites for cell growth and viability were found to be differentially expressed by clinical isolates. These observations were supported by the transcriptional expression study of selected genes evidencing cell wall/membrane re-organisation, altered oxidative stress, and reprogramming of carbon metabolic pathways. Collectively, the study advances our understanding on adaptative response of C. glabrata in vaginal microenvironment to lactic acid for survival and virulence.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Hrishikesh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era University, Dehradun-248001, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
13
|
Singh S, Ghosh C, Roy P, Pal K. Biosynthesis of folic acid appended PHBV modified copper oxide nanorods for pH sensitive drug release in targeted breast cancer therapy. Int J Pharm 2022; 622:121831. [PMID: 35589004 DOI: 10.1016/j.ijpharm.2022.121831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Multifunctional nanoplatforms as nanocarriers have attracted the interest of many scientists because they can achieve greater therapeutic effect in anticancer drug delivery to tumors with potential to improve cancer treatment, while currently available therapies are nonspecific and ineffectual. In present study, notable cancer therapeutic strategy which combines PEG functionalized poly (3-hydroxybutyric acid-co-hydroxyvaleric acid) (PHBV) nanospheres decorated with folic acid for delivery of paclitaxel (PTX) drug conjugated with copper oxide (CuO) nanoparticles (NPs) is proposed. Moreover, PTX loading with CuO NPs in PHBV nanosphere was done to increase its solubility and analyze its apoptotic effects in human breast cancer (MCF-7) cells. The pH-sensitive CuO-PTX@PHBV-PEG-FA nanosystem was successfully developed, as evidenced by number of characterizations. Resultant CuO-PTX@PHBV-PEG-FA NPs were 148.93 ± 10.5 nm in size, having 0.206 PDI, with -20.3 ± 0.6 mV zeta potential. MTT assay in MCF-7 cells was used to assess cell viability, while anticancer potential of CuO-PTX@PHBV-PEG-FA nanosystem was confirmed through different staining techniques. According to invitro studies, FA-conjugated PHBV modified CuO-PTX targeted nanoparticles exhibited higher anticancer effect than free PTX probably due to binding interaction of folate receptor with cells that overexpress the target. This nanosystem has the potential to be a promising breast cancer treatment agent.
Collapse
Affiliation(s)
- Swati Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Chandrachur Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India; Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
14
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|