1
|
Davis AP, Wiegers TC, Wiegers J, Wyatt B, Johnson RJ, Sciaky D, Barkalow F, Strong M, Planchart A, Mattingly CJ. CTD tetramers: a new online tool that computationally links curated chemicals, genes, phenotypes, and diseases to inform molecular mechanisms for environmental health. Toxicol Sci 2023; 195:155-168. [PMID: 37486259 PMCID: PMC10535784 DOI: 10.1093/toxsci/kfad069] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
The molecular mechanisms connecting environmental exposures to adverse endpoints are often unknown, reflecting knowledge gaps. At the Comparative Toxicogenomics Database (CTD), we developed a bioinformatics approach that integrates manually curated, literature-based interactions from CTD to generate a "CGPD-tetramer": a 4-unit block of information organized as a step-wise molecular mechanism linking an initiating Chemical, an interacting Gene, a Phenotype, and a Disease outcome. Here, we describe a novel, user-friendly tool called CTD Tetramers that generates these evidence-based CGPD-tetramers for any curated chemical, gene, phenotype, or disease of interest. Tetramers offer potential solutions for the unknown underlying mechanisms and intermediary phenotypes connecting a chemical exposure to a disease. Additionally, multiple tetramers can be assembled to construct detailed modes-of-action for chemical-induced disease pathways. As well, tetramers can help inform environmental influences on adverse outcome pathways (AOPs). We demonstrate the tool's utility with relevant use cases for a variety of environmental chemicals (eg, perfluoroalkyl substances, bisphenol A), phenotypes (eg, apoptosis, spermatogenesis, inflammatory response), and diseases (eg, asthma, obesity, male infertility). Finally, we map AOP adverse outcome terms to corresponding CTD terms, allowing users to query for tetramers that can help augment AOP pathways with additional stressors, genes, and phenotypes, as well as formulate potential AOP disease networks (eg, liver cirrhosis and prostate cancer). This novel tool, as part of the complete suite of tools offered at CTD, provides users with computational datasets and their supporting evidence to potentially fill exposure knowledge gaps and develop testable hypotheses about environmental health.
Collapse
Affiliation(s)
- Allan Peter Davis
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Thomas C Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jolene Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Brent Wyatt
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robin J Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Daniela Sciaky
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Fern Barkalow
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Melissa Strong
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
2
|
Priya TS, Chen TW, Chen SM, Kokulnathan T, Lou BS, Al-Onazi WA, Al-Mohaimeed AM, Elshikh MS, Yu J. Synthesis of perovskite-type potassium niobate using deep eutectic solvents: A promising electrode material for detection of bisphenol A. CHEMOSPHERE 2023; 318:137948. [PMID: 36716937 DOI: 10.1016/j.chemosphere.2023.137948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
This study demonstrates a hydrothermal method to prepare perovskite-type potassium niobate (KNbO3) through deep eutectic solvent (DES), which is further used as an electrode material for the determination of bisphenol A (BPA). The as-synthesized KNbO3 was systematically characterized by different microscopic and spectroscopic techniques. The KNbO3-modified electrode demonstrates excellent electrocatalytic activity for BPA compared to the pristine electrode. The enhanced performance of the proposed sensor is attributed to the numerous active sites, large electrochemical surface area, high electrical conductivity, and rapid electron transfer. The fabricated sensor shows a wide detection range (0.01-84.3 μM), a low limit of detection (0.003 μM), a high sensitivity (0.51 μA μM-1 cm-2), and good anti-interference abilities towards the BPA detection by linear sweep voltammetry method. Besides, it was successfully applied to determining BPA in food samples, demonstrating good practicability. This design paves a new way to fabricate efficient electrode material for various electrochemical applications using a DES medium.
Collapse
Affiliation(s)
- Thangavelu Sakthi Priya
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, 236, Taiwan.
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7th., Chung-Li Industrial Park, Taoyuan, Taiwan
| |
Collapse
|
3
|
Liao Y, Ding Y, Yu L, Xiang C, Yang M. Exploring the mechanism of Alisma orientale for the treatment of pregnancy induced hypertension and potential hepato-nephrotoxicity by using network pharmacology, network toxicology, molecular docking and molecular dynamics simulation. Front Pharmacol 2022; 13:1027112. [PMID: 36457705 PMCID: PMC9705790 DOI: 10.3389/fphar.2022.1027112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 10/28/2023] Open
Abstract
Background: Pregnancy-induced Hypertension (PIH) is a disease that causes serious maternal and fetal morbidity and mortality. Alisma Orientale (AO) has a long history of use as traditional Chinese medicine therapy for PIH. This study explores its potential mechanism and biosafety based on network pharmacology, network toxicology, molecular docking and molecular dynamics simulation. Methods: Compounds of AO were screened in TCMSP, TCM-ID, TCM@Taiwan, BATMAN, TOXNET and CTD database; PharmMapper and SwissTargetPrediction, GeneCards, DisGeNET and OMIM databases were used to predict the targets of AO anti-PIH. The protein-protein interaction analysis and the KEGG/GO enrichment analysis were applied by STRING and Metascape databases, respectively. Then, we constructed the "herb-compound-target-pathway-disease" map in Cytoscape software to show the core regulatory network. Finally, molecular docking and molecular dynamics simulation were applied to analyze binding affinity and reliability. The same procedure was conducted for network toxicology to illustrate the mechanisms of AO hepatotoxicity and nephrotoxicity. Results: 29 compounds with 78 potential targets associated with the therapeutic effect of AO on PIH, 10 compounds with 117 and 111 targets associated with AO induced hepatotoxicity and nephrotoxicity were obtained, respectively. The PPI network analysis showed that core therapeutic targets were IGF, MAPK1, AKT1 and EGFR, while PPARG and TNF were toxicity-related targets. Besides, GO/KEGG enrichment analysis showed that AO might modulate the PI3K-AKT and MAPK pathways in treating PIH and mainly interfere with the lipid and atherosclerosis pathways to induce liver and kidney injury. The "herb-compound-target-pathway-disease" network showed that triterpenoids were the main therapeutic compounds, such as Alisol B 23-Acetate and Alisol C, while emodin was the main toxic compounds. The results of molecular docking and molecular dynamics simulation also showed good binding affinity between core compounds and targets. Conclusion: This research illustrated the mechanism underlying the therapeutic effects of AO against PIH and AO induced hepato-nephrotoxicity. However, further experimental verification is warranted for optimal use of AO during clinical practice.
Collapse
Affiliation(s)
- Yilin Liao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly C. Comparative Toxicogenomics Database (CTD): update 2023. Nucleic Acids Res 2022; 51:D1257-D1262. [PMID: 36169237 PMCID: PMC9825590 DOI: 10.1093/nar/gkac833] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 01/30/2023] Open
Abstract
The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) harmonizes cross-species heterogeneous data for chemical exposures and their biological repercussions by manually curating and interrelating chemical, gene, phenotype, anatomy, disease, taxa, and exposure content from the published literature. This curated information is integrated to generate inferences, providing potential molecular mediators to develop testable hypotheses and fill in knowledge gaps for environmental health. This dual nature, acting as both a knowledgebase and a discoverybase, makes CTD a unique resource for the scientific community. Here, we report a 20% increase in overall CTD content for 17 100 chemicals, 54 300 genes, 6100 phenotypes, 7270 diseases and 202 000 exposure statements. We also present CTD Tetramers, a novel tool that computationally generates four-unit information blocks connecting a chemical, gene, phenotype, and disease to construct potential molecular mechanistic pathways. Finally, we integrate terms for human biological media used in the CTD Exposure module to corresponding CTD Anatomy pages, allowing users to survey the chemical profiles for any tissue-of-interest and see how these environmental biomarkers are related to phenotypes for any anatomical site. These, and other webpage visual enhancements, continue to promote CTD as a practical, user-friendly, and innovative resource for finding information and generating testable hypotheses about environmental health.
Collapse
Affiliation(s)
- Allan Peter Davis
- To whom correspondence should be addressed. Tel: +1 919 515 5705; Fax: +1 919 515 3355;
| | - Thomas C Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Robin J Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniela Sciaky
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jolene Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Stanic B, Kokai D, Tesic B, Fa S, Samardzija Nenadov D, Pogrmic-Majkic K, Andric N. Integration of data from the in vitro long-term exposure study on human endothelial cells and the in silico analysis: A case of dibutyl phthalate-induced vascular dysfunction. Toxicol Lett 2021; 356:64-74. [PMID: 34902519 DOI: 10.1016/j.toxlet.2021.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
General population is exposed to dibutyl phthalate (DBP) through continuous use of various consumer products. DBP exhibits its effects mainly on the endocrine and reproductive system but it can also affect the function of the vasculature; however, the underlying mechanisms behind DBP-induced vascular dysfunction are not fully understood. To infer pathways, molecular functions, biological processes, and human diseases associated with DBP exposure, we integrated the toxicogenomic data obtained from the 4-week-long exposure of human vascular endothelial cells (ECs) to three environmentally relevant concentrations of DBP with the in silico analysis. Nine genes were affected by DBP exposure: six of the integrin family, VCAM1, ICAM1, and MMP2. As shown by the in silico analysis, changes in DBP-affected genes could affect extracellular matrix and binding of molecules and cells to ECs, thereby altering cell adhesion and migration. Several pathways, molecular functions, and biological processes were further identified to provide insight into the DBP-vascular disease relationships and the potential mechanism of action. The top three human disease categories associated with DBP exposure and vascular dysfunction include cardiovascular, cerebrovascular, and immune system diseases. Integration of experimental and in silico approaches may offer better understanding of the potential human health risks associated with DBP exposure.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Biljana Tesic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Svetlana Fa
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|