1
|
Zhang L, Adyari B, Ma C, Cao M, Gad M, Abdel-Gawad FK, Hu A. Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136767. [PMID: 39662352 DOI: 10.1016/j.jhazmat.2024.136767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems.
Collapse
Affiliation(s)
- Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bob Adyari
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Cong Ma
- Xiamen Municipal Environmental Technology Co., Ltd., Xiamen 361001, China
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Fagr Kh Abdel-Gawad
- Center of Excellence for Research and Applied Studies on Climate Change and Sustainable Development (C3SD-NRC), National Research Centre, Dokki, Giza 12622, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Ding Y, Feng H, Han J, Jiang W, Dong S, Cheng H, Wang M, Wang A. Effect of UV pretreatment on the source control of floR during subsequent biotreatment of florfenicol wastewater. Appl Microbiol Biotechnol 2024; 108:120. [PMID: 38212963 DOI: 10.1007/s00253-023-12826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.
Collapse
Affiliation(s)
- Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China.
| | - Wenli Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Shuangjing Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Haoyi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
3
|
Dong S, Feng H, Du Y, Zhou J, Xu J, Lin D, Ding D, Xia Y, Wang M, Ding Y. Source elimination of antibiotic resistance risk in aquaculture water by VUV/sulfite pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122644. [PMID: 39326073 DOI: 10.1016/j.jenvman.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Antibiotic resistance risk in the aquaculture industry is increasing with the excessive consumption of antibiotics. Although various efficient technologies for the degradation of antibiotics are available, the potential risk from antibiotic resistance in treated waters is often overlooked. This study compared the risks of antibiotic resistance in anaerobic sludge fed with pretreated florfenicol (FLO) containing wastewater after four UV or vacuum UV (VUV)-driven ((V)UV-driven) pretreatments, and established the VUV/sulfite recirculating water system to validate the effect of controlling the antibiotic resistance risk in the actual aquaculture water. Metagenomics sequencing revealed that a remarkable decrease in the abundance of antibiotic resistance genes (ARGs) was observed in four different pretreated groups, and results among the four pretreated groups were sorted in descending order based on ARG abundance: UV > VUV > UV/sulfite > VUV/sulfite. The low abundance of ARGs from VUV/sulfite group was close to that in the CK group (wastewater without FLO and without any pretreatments), which was 0.41 copies/cell. From the perspective of the temporal changes in the relative abundance of floR, the abundance in VUV/sulfite group remained lower than 11.67 ± 0.73 during the cultivation time. Additionally, microbial diversity analysis found that Proteobacteria and Firmicutes were major carriers of ARGs. Two species from Burkholderiaceae and Rhodocyclales were identified as potential co-hosts to spread by the correlation analysis of the abundances between floR or intI1 and the top 50 genera. Finally, the abundances of ARGs and MGEs in the VUV/sulfite recirculating water system with actual aquaculture water were reduced by 39.15% and 46.04%, respectively, compared to that in the blank group without any pretreatment. This study verified that VUV/sulfite pretreatment system could effectively control the antibiotic resistance risk of ARGs proliferation and transfer in aquaculture water. Furthermore, the study demonstrated that the reduction of antibiotic antibacterial activity plays an important role in the source control of resistance risk.
Collapse
Affiliation(s)
- Shuangjing Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yao Du
- Zhejiang Zone-King Environmental Sci & Tech Co., Ltd., Hangzhou 310018, PR China
| | - Jingqing Zhou
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, PR China
| | - Jixiao Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Da Lin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Danna Ding
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yangcheng Ding
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China.
| |
Collapse
|
4
|
Song Z, Zhang L, Yang J, Ni SQ, Peng Y. Achieving high nitrogen and antibiotics removal efficiency by nZVI-C in partial nitritation/anammox system with a single-stage membrane-aerated biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134626. [PMID: 38759403 DOI: 10.1016/j.jhazmat.2024.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
This study innovated constructed an activated carbon-loaded nano-zero-valent iron (nZVI-C) enhanced membrane aerated biofilm reactor (MABR) coupled partial nitritation/anammox (PN/A) system for optimizing nitrogen and antibiotics removal. Results showed that nitrogen and antibiotic removal efficiencies of 88.45 ± 0.14% and 89.90 ± 3.07% were obtained by nZVI-C, respectively. nZVI-C hastened Nitrosomonas enrichment (relative abundance raised from 2.85% to 12.28%) by increasing tryptophan content in EPS. Furthermore, nZVI-C proliferated amo gene by 3.92 times and directly generated electrons, stimulating Ammonia monooxygenase (AMO) co-metabolism activity. Concurrently, via antibiotic resistance genes (ARGs) horizontal transfer, Nitrosomonas synergized with Arenimonas and Comamonadaceae for efficient antibiotic removal. Moreover, nZVI-C mitigated antibiotics inhibition of electron transfer by proliferating genes for PN and anammox electron production (hao, hdh) and utilization (amo, hzs, nir). That facilitated electron transfer and synergistic substrate conversion between ammonia oxidizing bacteria (AOB) and anaerobic ammonia oxidizing bacteria (AnAOB). Finally, the high nitrogen removal efficiency of the MABR-PN/A system was achieved.
Collapse
Affiliation(s)
- Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
5
|
Tondera K, Gillot S, Chazarenc F. Carbon redirection in chemically enhanced primary treatment of domestic wastewater: A meta-analysis of laboratory to full-scale trials. CHEMOSPHERE 2024; 351:141161. [PMID: 38218234 DOI: 10.1016/j.chemosphere.2024.141161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Increasing energy demands combined with local scarcities and rising prices make the valorisation of energy from domestic wastewater seen as a valuable resource. Chemically enhanced primary treatment (CEPT) enables an increased redirection of organic compounds into sludge in the primary stage of a wastewater treatment for a transformation into biogas (carbon capture). Traditionally used coagulants consist of metallic salts, but in the last two decades, the development of polymers, based on petroleum or synthesized from renewable sources such as plants, has been intensified. However, a direct comparison of the effectiveness of these products is missing. In this paper, we analysed data of peer-reviewed research from jar tests to full-scale studies, highlighting key parameters for successful carbon capture. More than 100 studies were identified, with a majority presenting results from tests under static conditions (jar tests), while data on full-scale applications are scarce. Overall, for TSS and COD, a clear correlation between inflow concentration and removal efficiency was found, irrespective of the product used. Comparison between the effectiveness of the different types of products is difficult, but bio-based coagulants need to be generally added in higher product concentrations for a considerable removal efficiency. While CEPT seems to increase the general sludge and biogas output, future studies should focus on harmonising laboratory analysis to make results comparable. Another important issue that should be addressed is the provision of experimental details, especially for full-scale trials, to enable for reliable conclusions.
Collapse
Affiliation(s)
- Katharina Tondera
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69518, Vaulx-en-Velin, France; Université de Lyon, INSA-Lyon, Laboratoire DEEP EA7429, 9 rue de la Physique, 69621 Villeurbanne, France.
| | | | | |
Collapse
|
6
|
Riisgaard-Jensen M, Dottorini G, Nierychlo M, Nielsen PH. Primary settling changes the microbial community of influent wastewater to wastewater treatment plants. WATER RESEARCH 2023; 244:120495. [PMID: 37651867 DOI: 10.1016/j.watres.2023.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The continuous immigration of bacteria in influent wastewater strongly impacts the microbial community of activated sludge (AS) in wastewater treatment plants (WWTP), both in terms of species composition and their abundance. Therefore, it is of interest to elucidate the route of immigrating bacteria into the biological tanks, including the effect of primary settlers. These are commonly used pretreatment units that can possibly selectively increase or reduce the relative abundance of certain bacteria. Species-level identification of the microbial composition of influent wastewater before and after primary settling was carried out in four full-scale municipal WWTPs biweekly over one year by 16S rRNA gene amplicon sequencing. Overall, 37-49% of incoming COD was removed in the primary settlers. Most genera and species were present in the wastewater to all four plants and the trend of these were investigated across the primary settlers. Approximately 50% of the genera had the same trend across at least three WWTPs. Few genera significantly increased in relative read abundance (3.7%) after settling, while 22.3% showed a significant reduction in relative abundance. We investigated process-critical species in AS, such as known nitrifiers, polyphosphate-accumulating organisms, and filamentous bacteria. Most taxa were affected similarly in all WWTPs including multiple genera involved in bulking in AS. However, some genera, e.g., important polyphosphate-accumulating bacteria, had inconsistent trends across WWTPs, suggesting that the characteristics of the wastewater are important for the trend of some bacteria through primary settling. In all cases, primary settling changed the microbial community of the influent wastewater, posing an obvious candidate for upstream control to optimize the assembly of the microbial communities in activated sludge.
Collapse
Affiliation(s)
- Marie Riisgaard-Jensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Giulia Dottorini
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
7
|
Wu Y, Gong Z, Wang S, Song L. Occurrence and prevalence of antibiotic resistance genes and pathogens in an industrial park wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163278. [PMID: 37019240 DOI: 10.1016/j.scitotenv.2023.163278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Antibiotic resistance genes (ARGs) and pathogens are emerging environmental pollutants that pose a threat to human health and ecosystem. Industrial park wastewater treatment plants (WWTPs) treat large amounts of comprehensive wastewater derived from industrial production and park human activity, which is possible a source of ARGs and pathogens. Therefore, this study investigated the occurrence and prevalence of ARGs, ARGs hosts and pathogens and assesses the ARGs health risk in the biological treatment process in a large-sale industrial park WWTP using metagenomic analysis and omics-based framework, respectively. Results show that the major ARG subtypes are multidrug resistance genes (MDRGs), macB, tetA(58), evgS, novA, msbA and bcrA and the ARGs main hosts were genus Acidovorax, Pseudomonas, Mesorhizobium. In particular, all determined ARGs genus level hosts are pathogens. The total removal percentage of ARGs, MDRGs and pathogens were 12.77 %, 12.96 % and 25.71 % respectively, suggesting that the present treatment could not efficiently remove these pollutants. The relative abundance of ARGs, MDRGs and pathogens varied along biological treatment process that ARGs and MDRGs were enriched in activated sludge and pathogens were enriched in both secondary sedimentation tank and activated sludge. Among 980 known ARGs, 23 ARGs (e.g., ermB, gadX and tetM) were assigned into risk Rank I with characters of enrichment in the human-associated environment, gene mobility and pathogenicity. The results indicate that industrial park WWTPs might serve as an important source of ARGs, MDRGs, and pathogens. These observations invite further study of the origination, development, dissemination and risk assessment of industrial park WWTPs ARGs and pathogens.
Collapse
Affiliation(s)
- Yongyi Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shuijing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
8
|
Amoohadi V, Pasalari H, Esrafili A, Gholami M, Farzadkia M. A comparative study on polyaluminum chloride (PACl) and Moringa oleifera (MO) chemically enhanced primary treatment (CEPT) in enhanced biogas production: anaerobic digestion performance and the Gompertz model. RSC Adv 2023; 13:17121-17129. [PMID: 37304783 PMCID: PMC10251396 DOI: 10.1039/d3ra02112b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
A comparative study was performed to estimate biogas production from sludge produced by organic and inorganic chemically enhanced primary treatments (CEPTs). To this end, the effects of two coagulants, polyaluminum chloride (PACl) and Moringa oleifera (MO), on CEPT and biogas production in anaerobic digestion were surveyed within an incubation period of 24 days. The optimal dosage and pH of PACl and MO were optimized in terms of sCOD, TSS and VS parameters in the CEPT process. Next, the digestion performance of anaerobic digestion reactors fed with sludge obtained from PACl and MO coagulants at a batch mesophilic reactor (37 ± 1 °C) was surveyed from the biogas production, volatile solid reduction (VSR) and Gompertz model. At the optimal conditions (pH = 7 and dosage = 5 mg L-1), the removal efficiency of COD, TSS and VS in CEPT assisted with PACL was 63, 81 and 56%, respectively. Moreover, CEPT assisted with MO led to the removal efficiency of COD, TSS and VS until 55, 68 and 25%, respectively. The highest methane yield (0.598 L gVS removed-1) was obtained in an anaerobic digestion reactor with sludge from the MO coagulant. The anaerobic digestion of CEPT sludge instead of primary sludge resulted in higher sCOD removal efficiency, and 43-50% of sCOD was observed compared with the removal of 32% for the primary sludge. Furthermore, the high coefficient of determination (R2) demonstrated the trustworthy predictive precision of the modified Gompertz model with actual data. The combination of CEPT and anaerobic digestion, especially using natural coagulants, provides a cost-effective and practical way to increase BMP from primary sludge.
Collapse
Affiliation(s)
- Vida Amoohadi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Chen H, Zheng Y, Zhou K, Cheng R, Zheng X, Ma Z, Shi L. Carbon emission efficiency evaluation of wastewater treatment plants: evidence from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27685-9. [PMID: 37243766 DOI: 10.1007/s11356-023-27685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
A scientific evaluation of the carbon emission efficiency is crucial for ensuring the sustainable development of wastewater treatment plants (WWTPs). In this paper, we applied a non-radial data envelopment analysis (DEA) model to calculate the carbon emission efficiency of 225 WWTPs located in China. The results showed that the average carbon emission efficiency of China's WWTPs was 0.59, indicating that the efficiencies of most samples still require improvement. The carbon emission efficiency of WWTPs from 2015 to 2017 decreased because of the decrease in technology efficiency. Among the influencing factors, different treating scales had positive impact on carbon emission efficiency improvement. WWTPs with anaerobic oxic process and the first-class A standard were likely to have higher carbon emission efficiency in the 225 WWTPs. By incorporating direct and indirect carbon emissions into WWTP efficiency evaluation, this study helped decision-makers and related water authorities to better understand the contribution of WWTPs to the aquatic and atmospheric environments.
Collapse
Affiliation(s)
- Huixin Chen
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Haidian District Beijing, Beijing, 100872, China
| | - Yunong Zheng
- School of Mathematics, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Kai Zhou
- Policy Research Center for Environment and Economy, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100029, China
| | - Rong Cheng
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Haidian District Beijing, Beijing, 100872, China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Haidian District Beijing, Beijing, 100872, China
- Collaborative Innovation and Industrial Development Research Center for Membrane Technology, Renmin University of China, Beijing, 100872, China
| | - Zhong Ma
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Haidian District Beijing, Beijing, 100872, China
| | - Lei Shi
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Haidian District Beijing, Beijing, 100872, China
- Collaborative Innovation and Industrial Development Research Center for Membrane Technology, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
10
|
Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review. SEPARATIONS 2022. [DOI: 10.3390/separations9120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ozone/peroxymonosulfate (O3/PMS) system has attracted widespread attention from researchers owing to its ability to produce hydroxyl radicals (•OH) and sulfate radicals (SO4•−) simultaneously. The existing research has shown that the O3/PMS system significantly degrades refinery trace organic compounds (TrOCs) in highly concentrated organic wastewater. However, there is still a lack of systematic understanding of the O3/PMS system, which has created a significant loophole in its application in the treatment of highly concentrated organic wastewater. Hence, this paper reviewed the specific degradation effect, toxicity change, reaction mechanism, various influencing factors and the cause of oxidation byproducts (OBPs) of various TrOCs when the O3/PMS system is applied to the degradation of highly concentrated organic wastewater. In addition, the effects of different reaction conditions on the O3/PMS system were comprehensively evaluated. Furthermore, given the limited understanding of the O3/PMS system in the degradation of TrOCs and the formation of OBPs, an outlook on potential future research was presented. Finally, this paper comprehensively evaluated the degradation of TrOCs in highly concentrated organic wastewater by the O3/PMS system, filling the gaps in scale research, operation cost, sustainability and overall feasibility.
Collapse
|
11
|
Leroy-Freitas D, Machado EC, Torres-Franco AF, Dias MF, Leal CD, Araújo JC. Exploring the microbiome, antibiotic resistance genes, mobile genetic element, and potential resistant pathogens in municipal wastewater treatment plants in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156773. [PMID: 35724791 DOI: 10.1016/j.scitotenv.2022.156773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 05/28/2023]
Abstract
Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future.
Collapse
Affiliation(s)
- D Leroy-Freitas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - E C Machado
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - A F Torres-Franco
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil; Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - M F Dias
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - C D Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - J C Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil.
| |
Collapse
|
12
|
Hazra M, Joshi H, Williams JB, Watts JEM. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. CHEMOSPHERE 2022; 303:135148. [PMID: 35640694 DOI: 10.1016/j.chemosphere.2022.135148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|
13
|
Kong Z, Zhou Y, Fu Z, Zhang Y, Yan R. Mechanism of stable power generation and nitrogen removal in the ANAMMOX-MFC treating low C/N wastewater. CHEMOSPHERE 2022; 296:133937. [PMID: 35167835 DOI: 10.1016/j.chemosphere.2022.133937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the mechanism of enhanced power generation and nitrogen removal in an ANAMMOX-MFC reactor through subsequent acetate addition. Data showed that nearly 99% total nitrogen removal (≤1 mg L-1) and 1.41 W m-3 power generation were achieved synchronously under low COD/N (∼1.5) after the subsequent addition of acetate (100 mgCOD·L-1). The columbic efficiency of the system has increased by 15 times (from 0.64% to 9.48%) after adding acetate. Batch tests showed that the denitrification and ANAMMOX progress occurred synchronously before acetate addition the nitrogen removal rate was accelerated. A distinct shift of bacterial community driven by acetate addition was discovered. The high throughput sequencing analysis indicated acetate addition stimulated the enrichment of denitrifiers, such as Aquimonas, Bradyrhizobium, Thauera, and the potential exoelectrogens changing from Comamonas to Pseudomonas. Functional genes forecasts based on KEGG database and COG database showed that the expressions of TCA functional genes were highly promoted in ANAMMOX-MFC, which demonstrated the enhanced electron transfer pathway driven by acetate addition under low COD/N ratio.
Collapse
Affiliation(s)
- Zhiyuan Kong
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yongheng Zhou
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China
| | - Zhimin Fu
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China.
| | - Yuancan Zhang
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China
| | - Rong Yan
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China
| |
Collapse
|