1
|
Xiao W, Yan S, Liu X, Sun S, Ui Haq Khan Z, Wu W, Sun J. Theoretical study on the degradation mechanism, kinetics and toxicity for aqueous ozonation reaction of furan derivatives. CHEMOSPHERE 2023; 332:138782. [PMID: 37142106 DOI: 10.1016/j.chemosphere.2023.138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The compounds including Furan-2,5-dicarboxylic acid (FDCA), 2-methyl-3-furoic acid (MFA), and 2-furoic acid (FA), containing Furan rings are considered to be possessing high ozone reactivity, although in depth studies of their ozonation processes have not been carried out yet. Hence, mechanism, kinetics and toxicity by quantum chemical, and their structure activity relationship are being investigated in this study. Studies of reaction mechanisms revealed that during the ozonolysis of three furan derivatives containing C=C double bond, furan ring opening occurs. At temperature (298 K) and pressure of 1 atm the degradations rates of 2.22 × 103 M-1 s-1 (FDCA), 5.81 × 106 M-1 s-1 (MFA) and 1.22 × 105 M-1 s-1 (FA) suggested that the reactivity order is: MFA > FA > FDCA. In the presence of water, oxygen and ozone, the primary product of ozonation, the Criegee intermediates (CIs) would produce lower molecule weight of aldehydes and carboxylic acids by undergoing degradation pathways. The aquatic toxicity reveals that three furan derivatives play green chemicals roles. Significantly, most of degradation products are least harmful to organisms residing the hydrosphere. The mutagenicity and developmental toxicity of FDCA is minimum as compared to FA and MFA, which shows the applicability of FDCA in a wider and broader field. Results of this study revealed its importance in the industrial sector and degradation experiments.
Collapse
Affiliation(s)
- Weikang Xiao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| | - Suding Yan
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, PR China
| | - Xiufan Liu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| | - Simei Sun
- Huangshi Key Laboratory of Photoelectric Technology and Materials, College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, PR China
| | - Zia Ui Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Wenzhong Wu
- College of Foreign Languages, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| | - Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China.
| |
Collapse
|
2
|
Zhao H, Sun J, Zhang Y, Wang S, Lu C, Tang Y, Guan J, Pan Y. Investigations on mechanisms, kinetics, and ecotoxicity in OH-initiated degradation of 1,2,4,5-tetramethylbenzene in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84616-84628. [PMID: 35788481 DOI: 10.1007/s11356-022-21704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
As one of the volatile organic compounds (VOCs) in the environment, 1,2,4,5-tetramethylbenzene (1,2,4,5-TeMB) present in oily wastewater, and it can occur substitution, abstraction, and addition reactions with OH radicals in the atmosphere and wastewater. Electrostatic potential (ESP) and average local ionization energy (ALIE) prediction indicate that H atoms from CH3 group and the benzene ring are the most active sites in 1,2,4,5-TeMB. The result shows that potential energy surfaces (PESs) in the gas and aqueous phase are similar, and the relevant barriers in the latter one are higher. The dominant channel is H abstraction from the benzene ring, and the subdominant one is OH radical addition to the benzene ring. Furthermore, subsequent reactions of dominant products with O2, NO2, NO, and OH radicals in the atmosphere are studied, as well. The total reaction rate constant is calculated to be 2.36×10-10 cm3 molecule-1 s-1 at 1 atm and 298 K in the atmosphere, which agrees well with the experimental data. While the total rate constant in the aqueous phase is much lower than that in the gas phase. Ecologic toxicity analysis shows that 1,2,4,5-TeMB is very toxic to fish, daphnia, and green algae; and OH-initiated degradation in the environment will reduce its toxicity.
Collapse
Affiliation(s)
- Hui Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Jingyu Sun
- College of Chemistry and Environmental engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Yunju Zhang
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, People's Republic of China
| | - Shuangjun Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China.
| | - Jing Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Yaru Pan
- College of Chemistry, Tonghua Normal University, Tonghua, 134002, People's Republic of China
| |
Collapse
|