1
|
Wang W, Liu X, Jing J, Mu J, Wang R, Du C, Su Y. Photoelectrocatalytic peroxymonosulfate activation over CoFe2O4-BiVO4 photoanode for environmental purification: Unveiling of multi-active sites, interfacial engineering and degradation pathways. J Colloid Interface Sci 2023; 644:519-532. [PMID: 37032247 DOI: 10.1016/j.jcis.2023.03.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
This work reported on the development of CoFe2O4-BiVO4 photoanode based photoelectrocatalytic system collaborating with peroxymonosulfate activation for organic contaminants removal. CoFe2O4 layer not only provided active sites for direct peroxymonosulfate activation but also accelerated charge separation process for the enhancement of photocurrent density and photoelectrocatalytic performance. Junction of CoFe2O4 layer on BiVO4 photoanode led to the improvement of photocurrent density to 4.43 mA/cm2 at 1.23 VRHE, which was approximately 4.06 times higher than that of pure BiVO4. Subsequently, the corresponding optimal degradation efficiency toward the tetracycline model contaminant achieved to be 89.1% with total organic carbon removal value of about 43.7% within 60 min. Moreover, the degradation rate constant of CoFe2O4-BiVO4 photoanode in photoelectrocatalytic system was 0.037 min-1, which was about 1.23, 2.64 and 3.70 times higher than the values in photocatalysis, electrocatalysis and PMS only based systems, respectively. In addition, radical scavenging experiments and electron spin resonance spectra indicated a synergy of radical and nonradical coupling process where •OH and 1O2 played vital roles during tetracycline degradation. Plausible photoelectrocatalytic mechanism and degradation pathway were proposed. This work provided an effective strategy to construct peroxymonosulfate assisted photoelectrocatalytic system toward green environmental applications.
Collapse
Affiliation(s)
- Weihong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xudong Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Jianfang Jing
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Jiarong Mu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ruixi Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Yu H, Liu Y, Cong S, Xia S, Zou D. Review of Mo-based materials in heterogeneous catalytic oxidation for wastewater purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
3
|
Fdez-Sanromán A, Pazos M, Sanroman A. Peroxymonosulphate Activation by Basolite ® F-300 for Escherichia coli Disinfection and Antipyrine Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6852. [PMID: 35682435 PMCID: PMC9180711 DOI: 10.3390/ijerph19116852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023]
Abstract
In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens.
Collapse
Affiliation(s)
| | | | - Angeles Sanroman
- CINTECX, Department of Chemical Engineering, Campus As Lagoas-Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (A.F.-S.); (M.P.)
| |
Collapse
|