1
|
Zhang Y, Li D, Zhang L, Li J, Fu Q, Zhu X, Liao Q. Response of current distribution in a liter-scale microbial fuel cell to variable operating conditions. Bioelectrochemistry 2024; 156:108622. [PMID: 38070364 DOI: 10.1016/j.bioelechem.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Microbial fuel cells (MFCs) are an emerging technology in renewable energy and waste treatment and the scale-up is crucial for practical applications. Undoubtedly, the analysis and comprehension of MFC operation necessitate essential information regarding the response of the current distribution to variable operating conditions, which stands as one of its significant dynamic characteristics. In this study, the dynamic responses of current distribution to external stimuli (external load, temperature, pH, and electrolyte concentration) were investigated by employing a segmented anode current collector in a liter-scale MFC. The results demonstrated that, with respect to the anodic segment close to the cathode, a major response of the segment current to changes in load, temperature and pH was observed while minor response to changes in ion concentration. It was also found that external stimuli-induced high current usually led to a worse current distribution while increasing electrolyte ion concentration could simultaneously improve the maximal power generation and current distribution. In addition, the response time of segment current to input stimulus followed the pattern of temperature ˃ pH ˃ ion concentration ˃ external load. The results and implication of this study would be helpful in enhancing the operational stability of scale-up MFCs in future practical application.
Collapse
Affiliation(s)
- Yudong Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China; School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Dong Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Liang Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China.
| | - Jun Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
2
|
Yin M, Fu B, Xu T, Cao X, Huang X, Zhang X. Spatially-assembled binary carbon anode synergizing directional electron transfer and enriched microbe accommodation for wastewater treatment and energy conversion: From simulation to experiments. WATER RESEARCH 2024; 252:121104. [PMID: 38295458 DOI: 10.1016/j.watres.2024.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Bioelectrochemical systems (BESs) hold prospects in wastewater energy and resource recovery. Anode optimization is important for simultaneous enhancement of wastewater energy conversion and effluent quality in BESs. In this study, a multi-physics model coupling fluid flow, organic degradation and electrochemical process was constructed to guide the design and optimization of BES anodes. Based on the multi-physics simulation, spatially-assembled binary carbon anodes composed of three-dimensional carbon mesh skeleton and granular activated carbon were proposed and established. The granular activated carbon conducive to microbe accommodation played a vital role in improving effluent water quality, while the carbon mesh skeleton favoring electron collection and transfer could enhance the bioelectricity output. With an average chemical oxygen demand (COD) removal rate of 0.442 kg m-3 d-1, a maximum power density of 20.6 W m-3 was achieved in the optimized composite anode BES, which was 25% and 154% higher than carbon mesh skeleton BES and granular activated carbon BES. Electroactive bacteria were enriched in composite anodes and performed important functions related to microbial metabolism and energy production. The spatially-assembled binary carbon anode with low carbon mesh packing density was more cost-effective with a daily energy output per anode cost of 221 J d-1 RMB-1. This study not only provides a cost-efficient alternative anode to simultaneously improve organic degradation and power generation performance, but also demonstrates the potential of multi-physics simulation in offering theoretical support and prediction for BES configuration design as well as optimization.
Collapse
Affiliation(s)
- Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Boya Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ting Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoxin Cao
- Guizhou Zhuxin Water Environment Industries Company, Guiyang 550000, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Tamilarasan K, Shabarish S, Rajesh Banu J, Godvin Sharmila V. Sustainable power production from petrochemical industrial effluent using dual chambered microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119777. [PMID: 38086119 DOI: 10.1016/j.jenvman.2023.119777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Dual chambered microbial fuel cell (DMFC) is an advanced and effective treatment technology in wastewater treatment. The current work has made an effort to treat petrochemical industrial wastewater (PWW) as a DMFC substrate for power generation and organic substance removal. Investigating the impact of organic load (OL) on organic reduction and electricity generation is the main objective of this study. At the OL of 1.5 g COD/L, the highest total chemical oxygen demand (TCOD) removal efficiency of 88%, soluble oxygen demand (SCOD) removal efficiency of 80% and total suspended solids (TSS) removal efficiency of 71% were seen, respectively. In the same optimum condition of 1.5 g COD/L, the highest current and power density of about 270 mW/m2 and 376 mA/m2 were also observed. According to the results of this study, using high-strength organic wastewater in DMFC can assist in addressing the issue of the petrochemical industries and minimize the energy demand.
Collapse
Affiliation(s)
- K Tamilarasan
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - S Shabarish
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam, 629171, Tamil Nadu, India.
| |
Collapse
|
4
|
Treatment of Tanning Effluent Using Seaweeds and Reduction of Environmental Contamination. J CHEM-NY 2022. [DOI: 10.1155/2022/7836671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the main sources of dangerous chemicals that are dumped untreated into land and water bodies and have a negative influence on the ecosystem are industrial effluents. Seaweeds are currently used for treating industrial effluent effectively. The technology is at a maturing stage. This paper reviews the characterization and cultivation of seaweeds for wastewater treatment. In this present study, different extracts of four seaweeds such as Gracilaria edulis, Sargassum wightii, Turbinaria ornata, and Kappaphycus alvarezii, from the Mandapam coastal regions were analyzed. The seaweeds are used to treat the leather industry effluents collected from EKM leather processing company, Erode, Tamil Nadu, India. Among all, extracts of Gracilaria edulis survived at different concentrations of TDS: 15,000, 25000, and 35000 mg/l. Out of these different ranges, TDS of about 25000 mg/l seaweed named Gracilaria edulis reduced more amounts of chemicals present in the effluent like TDS (93.90%), phosphates (72.71%), nitrate (75.08%), nitrite (76.92%), and turbidity (99.01%) content. Additionally, we produce the quality and strength of agar gel from the cultivation of Gracilaria edulis by the Nikansui method. Finally, we got the extraction procedure to obtain a higher yield of about 10.26% and a maximum gel strength of 92.06 g·cm−2 while maintaining the melting point at 78°C.
Collapse
|
5
|
Chauhan S, Sharma V, Varjani S, Sindhu R, Chaturvedi Bhargava P. Mitigation of tannery effluent with simultaneous generation of bioenergy using dual chambered microbial fuel cell. BIORESOURCE TECHNOLOGY 2022; 351:127084. [PMID: 35358671 DOI: 10.1016/j.biortech.2022.127084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, a dual chambered microbial fuel cell (MFC) was fabricated for the treatment of tannery wastewater with concurrent production of bio-energy. The tannery effluent acts as an anolyte and a synthetic electrolytic solution as the catholyte. Five electrochemically active bacteria from the biofilm were isolated that showed homology with Klebsiella quasipneumoniae, Klebsiella pneumoniae, Cloacibacterium normanese, Bacillus firmus and Pseudomonas reactans, using 16S rDNA analysis. The physiochemical studies of treated wastewater showcased the 88%, 74% and 94% reduction in COD, BOD and TDS level, respectively. The maximum voltage output and power density obtained using electroactive consortium in MFC was 940 mV and 7371 mW/cm3, respectively. The techno-economic feasibility of the bio-electrochemical system was studied for future bioprospecting. The present study reports a significant power generation with simultaneous effluent treatment up to a maximum of ∼85%, in a sustainable and eco-friendly manner.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | | | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
6
|
Mukherjee A, Patel R, Zaveri P, Shah MT, Munshi NS. Microbial fuel cell performance for aromatic hydrocarbon bioremediation and common effluent treatment plant wastewater treatment with bioelectricity generation through series-parallel connection. Lett Appl Microbiol 2021; 75:785-795. [PMID: 34821400 DOI: 10.1111/lam.13612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/07/2022]
Abstract
Microbial fuel cell (MFC) is an emerging technology which has been immensely investigated for wastewater treatment along with electricity generation. In the present study, the treatment efficiency of MFC was investigated for hydrocarbon containing wastewater by optimizing various parameters of MFC. Mediator-less MFC (1·2 l) was constructed, and its performance was compared with mediated MFC with Escherichia coli as a biocatalyst. MFC with electrode having biofilm proved to be better compared with MFC inoculated with suspended cells. Analysis of increasing surface area of electrode by increasing their numbers indicated increase in COD reduction from 55 to 75%. Catholyte volume was optimized to be 750 ml. Sodium benzoate (0·721 g l-1 ) and actual common effluent treatment plant (CETP) wastewater as anolyte produced 0·8 and 0·6 V voltage and 89 and 50% COD reduction, respectively, when a novel consortium of four bacterial strains were used. Twenty MFC systems with the developed consortium when electrically connected in series-parallel connection were able to generate 2·3 V and 0·5 mA current. This is the first report demonstrating the application of CETP wastewater in the MFC system, which shows potential of the system towards degradation of complex organic components present in industrial wastewater.
Collapse
Affiliation(s)
- A Mukherjee
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - R Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - P Zaveri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - M T Shah
- Department of Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India
| | - N S Munshi
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|